Hopf bifurcation control using nonlinear feedback with polynomial functions

被引:114
作者
Yu, P [1 ]
Chen, GR
机构
[1] Univ Western Ontario, Dept Appl Math, London, ON N6A 5B7, Canada
[2] City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2004年 / 14卷 / 05期
基金
加拿大自然科学与工程研究理事会;
关键词
control system; Hopf bifurcation control; limit cycle; normal form; Lorenz equation; Rossler system;
D O I
10.1142/S0218127404010291
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A general explicit formula is derived for controlling bifurcations using nonlinear state feedback. This method does not increase the dimension of the system, and can be used to either delay (or eliminate) existing bifurcations or change the stability of bifurcation solutions. The method is then employed for Hopf bifurcation control. The Lorenz equation and Rossler system are used to illustrate the application of the approach. It is shown that a simple control can be obtained to simultaneously stabilize two symmetrical equilibria of the Lorenz system, and keep the symmetry of Hopf bifurcations from the equilibria. For the Rossler system, a control is also obtained to simultaneously stabilize two nonsymmetric equilibria and meanwhile stabilize possible Hopf bifurcations from the equilibria. Computer simulation results are presented to confirm the analytical predictions.
引用
收藏
页码:1683 / 1704
页数:22
相关论文
共 16 条
[1]   LOCAL FEEDBACK STABILIZATION AND BIFURCATION CONTROL .2. STATIONARY BIFURCATION [J].
ABED, EH ;
FU, JH .
SYSTEMS & CONTROL LETTERS, 1987, 8 (05) :467-473
[2]   Controlling oscillation amplitudes via feedback [J].
Berns, DW ;
Moiola, JL ;
Chen, GR .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (12) :2815-2822
[3]   Anti-control of Hopf bifurcations [J].
Chen, DS ;
Wang, HO ;
Chen, GR .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2001, 48 (06) :661-672
[4]   Bifurcation control: Theories, methods, and applications [J].
Chen, GR ;
Moiola, JL ;
Wang, HO .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2000, 10 (03) :511-548
[5]   BIFURCATIONS AND CHAOS IN ELECTRIC-POWER SYSTEMS - NUMERICAL-STUDIES [J].
CHIANG, HD ;
CONNEEN, TP ;
FLUECK, AJ .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1994, 331B (06) :1001-1036
[6]  
GU G, 1997, INT J CONTROL, V6, P241
[7]  
Guckenheimer J., 1993, NONLINEAR OSCILLATIO
[8]  
KANUG W, 2000, SIAM J CONTROL OPTIM, V30, P1319
[9]   Hopf bifurcation control in power systems with static var compensators [J].
Laufenberg, MJ ;
Pai, MA ;
Padiyar, KR .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 1997, 19 (05) :339-347
[10]   Bifurcations in a power system model [J].
Nayfeh, AH ;
Harb, AM ;
Chin, CM .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (03) :497-512