Random Forest Based on Federated Learning for Intrusion Detection

被引:16
作者
Markovic, Tijana [1 ]
Leon, Miguel [1 ]
Buffoni, David [2 ]
Punnekkat, Sasikumar [1 ]
机构
[1] Malardalen Univ, Sch Innovat Design & Engn, Vasteras, Sweden
[2] Tietoevry, Stockholm, Sweden
来源
ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2022, PART I | 2022年 / 646卷
基金
欧盟地平线“2020”;
关键词
Intrusion detection; Random Forest; Federated learning;
D O I
10.1007/978-3-031-08333-4_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Vulnerability of important data is increasing everyday with the constant evolution and increase of sophisticated cyber security threats that can seriously affect the business processes. Hence, it is important for organizations to define and implement appropriate mechanisms such as intrusion detection systems to protect their valuable data. In recent years, various machine learning approaches were proposed for intrusion detection, where Random Forest (RF) is recognized as one of the most suitable algorithms. Machine learning algorithms are data-oriented and storing data for training on the centralized server can increase the vulnerability of the whole system. In this paper, we are using a federated learning approach that independently trains data subsets on multiple clients and sends only the resulting models for aggregation to a server. This considerably reduces the need for sending all data to a centralised server. Different RF-based federated learning versions were evaluated on four intrusion detection benchmark datasets (KDD, NSL-KDD, UNSW-NB15, and CIC-IDS-2017). In our experiments, the global RF on the server achieved higher accuracy than the maximum achieved with individual RFs on the clients in the case of two out of four datasets, and it was very close to the maximum for the third dataset. Even in the fourth case, the global RF performed better than the average accuracy, although it fell behind the maximum.
引用
收藏
页码:132 / 144
页数:13
相关论文
共 28 条
[1]   Performance Analysis of Anomaly Based Network Intrusion Detection Systems [J].
Abedin, Md. Zainal ;
Siddiquee, Kazy Noor-e-Alam ;
Bhuyan, M. S. ;
Karim, Razuan ;
Hossain, Mohammad Shahadat ;
Andersson, Karl .
PROCEEDINGS OF THE 2018 43RD ANNUAL IEEE CONFERENCE ON LOCAL COMPUTER NETWORKS WORKSHOPS (LCN WORKSHOPS), 2018, :1-7
[2]  
Agrawal S, 2021, Arxiv, DOI [arXiv:2106.09527, DOI 10.48550/ARXIV.2106.09527]
[3]   Network intrusion detection system: A systematic study of machine learning and deep learning approaches [J].
Ahmad, Zeeshan ;
Shahid Khan, Adnan ;
Wai Shiang, Cheah ;
Abdullah, Johari ;
Ahmad, Farhan .
TRANSACTIONS ON EMERGING TELECOMMUNICATIONS TECHNOLOGIES, 2021, 32 (01)
[4]   A Survey of Random Forest Based Methods for Intrusion Detection Systems [J].
Alves Resende, Paulo Angelo ;
Drummond, Andre Costa .
ACM COMPUTING SURVEYS, 2018, 51 (03)
[5]  
Bace R., 2001, Technical Report 800-31
[6]  
Breiman L., 2001, MACH LEARN, V45, P4150
[7]   A Survey of Data Mining and Machine Learning Methods for Cyber Security Intrusion Detection [J].
Buczak, Anna L. ;
Guven, Erhan .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2016, 18 (02) :1153-1176
[8]   Evaluating Federated Learning for intrusion detection in Internet of Things: Review and challenges [J].
Campos, Enrique Marmol ;
Saura, Pablo Fernandez ;
Gonzalez-Vidal, Aurora ;
Hernandez-Ramos, Jose L. ;
Bernabe, Jorge Bernal ;
Baldini, Gianmarco ;
Skarmeta, Antonio .
COMPUTER NETWORKS, 2022, 203
[9]   DFedForest: Decentralized Federated Forest [J].
de Souza, Lucas Airam C. ;
Rebello, Gabriel Antonio F. ;
Camilo, Gustavo F. ;
Guimaraes, Lucas C. B. ;
Duarte, Otto Carlos M. B. .
2020 IEEE INTERNATIONAL CONFERENCE ON BLOCKCHAIN (BLOCKCHAIN 2020), 2020, :90-97
[10]   Random Forest Modeling for Network Intrusion Detection System [J].
Farnaaz, Nabila ;
Jabbar, M. A. .
TWELFTH INTERNATIONAL CONFERENCE ON COMMUNICATION NETWORKS, ICCN 2016 / TWELFTH INTERNATIONAL CONFERENCE ON DATA MINING AND WAREHOUSING, ICDMW 2016 / TWELFTH INTERNATIONAL CONFERENCE ON IMAGE AND SIGNAL PROCESSING, ICISP 2016, 2016, 89 :213-217