Structure of eigenstates and quench dynamics at an excited-state quantum phase transition

被引:67
作者
Santos, Lea F. [1 ,2 ]
Perez-Bernal, Francisco [3 ]
机构
[1] Yeshiva Univ, Dept Phys, New York, NY 10016 USA
[2] Harvard Smithsonian Ctr Astrophys, ITAMP, Cambridge, MA 02138 USA
[3] Univ Huelva, Fac Ciencias Expt, Dept Fis Aplicada, Huelva 21071, Spain
来源
PHYSICAL REVIEW A | 2015年 / 92卷 / 05期
基金
美国国家科学基金会;
关键词
SYSTEMS; CHAOS; MODEL; PROPAGATION; SIGNATURES; SUPERFLUID; MONODROMY; SPECTRUM; GAS;
D O I
10.1103/PhysRevA.92.050101
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the structure of the eigenstates and the dynamics of a system that undergoes an excited-state quantum phase transition (ESQPT). The analysis is performed for two-level pairing models characterized by a U(n + 1) algebraic structure. They exhibit a second-order phase transition between two limiting dynamical symmetries represented by the U(n) and SO(n + 1) subalgebras. They are, or can be mapped onto, models of interacting bosons. We show that the eigenstates with energies very close to the ESQPT critical point, E-ESQPT, are highly localized in the U(n) basis. Consequently, the dynamics of a system initially prepared in a U(n)-basis vector with energy epsilon similar to E-ESQPT may be extremely slow. Signatures of an ESQPT can therefore be found in the structures of the eigenstates and in the speed of the system evolution after a sudden quench. Our findings can be tested experimentally with trapped ions.
引用
收藏
页数:5
相关论文
共 58 条
[1]  
[Anonymous], 2011, QUANTUM PHASE TRANSI
[2]   Relaxation of Antiferromagnetic Order in Spin-1/2 Chains Following a Quantum Quench [J].
Barmettler, Peter ;
Punk, Matthias ;
Gritsev, Vladimir ;
Demler, Eugene ;
Altman, Ehud .
PHYSICAL REVIEW LETTERS, 2009, 102 (13)
[3]   Quantum Criticality and Dynamical Instability in the Kicked-Top Model [J].
Bastidas, Victor Manuel ;
Perez-Fernandez, Pedro ;
Vogl, Malte ;
Brandes, Tobias .
PHYSICAL REVIEW LETTERS, 2014, 112 (14)
[4]   Dicke quantum phase transition with a superfluid gas in an optical cavity [J].
Baumann, Kristian ;
Guerlin, Christine ;
Brennecke, Ferdinand ;
Esslinger, Tilman .
NATURE, 2010, 464 (7293) :1301-U1
[5]   Excited-state quantum phase transitions in Dicke superradiance models [J].
Brandes, Tobias .
PHYSICAL REVIEW E, 2013, 88 (03)
[6]   Dynamics of entanglement entropy and entanglement spectrum crossing a quantum phase transition [J].
Canovi, Elena ;
Ercolessi, Elisa ;
Naldesi, Piero ;
Taddia, Luca ;
Vodola, Davide .
PHYSICAL REVIEW B, 2014, 89 (10)
[7]   Excited state quantum phase transitions in many-body systems [J].
Caprio, M. A. ;
Cejnar, P. ;
Iachello, F. .
ANNALS OF PHYSICS, 2008, 323 (05) :1106-1135
[8]   Phase structure of interacting boson models in arbitrary dimension [J].
Cejnar, Pavel ;
Iachello, Francesco .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (04) :581-595
[9]   Monodromy and excited-state quantum phase transitions in integrable systems: collective vibrations of nuclei [J].
Cejnar, Pavel ;
Macek, Michal ;
Heinze, Stefan ;
Jolie, Jan ;
Dobes, Jan .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (31) :L515-L521
[10]   Impact of quantum phase transitions on excited-level dynamics [J].
Cejnar, Pavel ;
Stransky, Pavel .
PHYSICAL REVIEW E, 2008, 78 (03)