Rational curves on elliptic K3 surfaces

被引:0
|
作者
Tayou, Salim [1 ]
机构
[1] Ecole Normale Super, DMA, 45 Rue Ulm, F-75005 Paris, France
基金
欧洲研究理事会;
关键词
POINTS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that any non-isotrivial elliptic K3 surface over an algebraically closed field k of arbitrary characteristic contains infinitely many rational curves. In the case when char(k) not equal 2, 3, we prove this result for any elliptic K3 surface. When the characteristic of k is zero, this result is due to the work of Bogomolov-Tschinkel and Hassett.
引用
收藏
页码:1237 / 1247
页数:11
相关论文
共 50 条
  • [1] Singular rational curves on elliptic K3 surfaces
    Baltes, Jonas
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (07) : 2701 - 2714
  • [2] Rational curves on K3 surfaces
    Jun Li
    Christian Liedtke
    Inventiones mathematicae, 2012, 188 : 713 - 727
  • [3] Rational curves on K3 surfaces
    Chen, X
    JOURNAL OF ALGEBRAIC GEOMETRY, 1999, 8 (02) : 245 - 278
  • [4] Rational curves on K3 surfaces
    Li, Jun
    Liedtke, Christian
    INVENTIONES MATHEMATICAE, 2012, 188 (03) : 713 - 727
  • [5] POINTED CURVES ON K3 SURFACES WHICH ARE DOUBLE COVERS OF RATIONAL ELLIPTIC SURFACES
    Komeda, Jiryo
    Mase, Makiko
    TSUKUBA JOURNAL OF MATHEMATICS, 2023, 47 (01) : 65 - 82
  • [6] K3 surfaces, rational curves, and rational points
    Baragar, Arthur
    McKinnon, David
    JOURNAL OF NUMBER THEORY, 2010, 130 (07) : 1470 - 1479
  • [7] Nodal elliptic curves on K3 surfaces
    Chen, Nathan
    Greer, Francois
    Yang, Ruijie
    MATHEMATISCHE ANNALEN, 2023, 386 (3-4) : 2349 - 2370
  • [8] Nodal elliptic curves on K3 surfaces
    Nathan Chen
    François Greer
    Ruijie Yang
    Mathematische Annalen, 2023, 386 : 2349 - 2370
  • [9] Counting elliptic curves in K3 surfaces
    Lee, Junho
    Leung, Naichung Conan
    JOURNAL OF ALGEBRAIC GEOMETRY, 2006, 15 (04) : 591 - 601
  • [10] 24 rational curves on K3 surfaces
    Rams, Slawomir
    Schuett, Matthias
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2023, 25 (06)