Li2O-2B2O3 coating decorated Li4Ti5O12 anode for enhanced rate capability and cycling stability in lithium-ion batteries

被引:22
作者
Zhu, Tianyu [1 ]
Yu, Cuiping [1 ]
Li, Yang [1 ]
Cai, Rui [1 ]
Cui, Jiewu [1 ]
Zheng, Hongmei [1 ]
Chen, Dong [2 ]
Zhang, Yong [1 ,3 ]
Wu, Yucheng [1 ,3 ,6 ]
Wang, Yan [1 ,4 ,5 ]
机构
[1] Hefei Univ Technol, Sch Mat Sci & Engn, Hefei 230009, Peoples R China
[2] Hefei Univ Technol, Sch Instrument Sci & Optoelect Engn, Hefei 230009, Peoples R China
[3] Hefei Univ Technol, China Int S&T Cooperat Base Adv Energy & Environm, Hefei 230009, Peoples R China
[4] Hefei Univ Technol, Key Lab Adv Funct Mat & Devices Anhui Prov, Hefei 230009, Peoples R China
[5] Hefei Univ Technol, Anhui Prov Int S&T Cooperat Base Adv Energy Mat, Hefei 230009, Peoples R China
[6] Taiyuan Univ Technol, Minist Educ, Key Lab Interface Sci & Engn Adv Mat, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Li2O-2B(2)O(3); Ionic conductor; Coating modification; Li4Ti5O12; anode; Lithium-ion batteries; CATHODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; SURFACE; OXIDE; INTERFACE; COMPOSITE; BEHAVIOR; SPINEL; CARBON;
D O I
10.1016/j.jcis.2020.10.037
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li2O-2B(2)O(3) (LBO) ionic conductor with high conductivity plays an important role in boosting the rate performance and cycling stability of Li4Ti5O12 (LTO) anode for lithium-ion batteries by preventing direct exposure of LTO to the electrolyte. Herein, the effect of LBO coating layer on lithium ion (Li+) storage performance is investigated in detail by adjusting the adding amount of LBO precursor dispersion. LTO coated with 2 wt% LBO achieves an optimum performance with a specific capacity of 172.9 mA h g(-1) at a current density of 0.1 A g(-1), an improved rate capability (specific capacity of 127.9 mA h g(-1) is maintained when the current density is 20 times than 0.1 A g(-1)) and a remarkable cycling stability (capacity retention of 94.2% after 4000 cycles at 2.0 A g(-1)). These LBO-LTO composites are competitive and promising candidates for electrochemical energy storage and other applications. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:574 / 582
页数:9
相关论文
共 57 条
[1]   Nanostructured Anode Material for High-Power Battery System in Electric Vehicles [J].
Amine, Khalil ;
Belharouak, Ilias ;
Chen, Zonghai ;
Tran, Taison ;
Yumoto, Hiroyuki ;
Ota, Naoki ;
Myung, Seung-Taek ;
Sun, Yang-Kook .
ADVANCED MATERIALS, 2010, 22 (28) :3052-3057
[2]   Effective enhancement in rate capability and cyclability of Li4Ti5O12 enabled by coating lithium magnesium silicate [J].
Bai, Xue ;
Zhang, Bo ;
Jiang, Guan-Zhong ;
Han, Jian-Ping ;
Lun, Ning ;
Qi, Yong-Xin ;
Qiu, Jun ;
Lu, Gui-Xia ;
Qian, Zhao ;
Bai, Yu-Jun .
ELECTROCHIMICA ACTA, 2019, 295 :891-899
[3]   Ionic Conductor of Li2SiO3 as an Effective Dual-Functional Modifier To Optimize the Electrochemical Performance of Li4Ti5O12 for High-Performance Li-Ion Batteries [J].
Bai, Xue ;
Li, Tao ;
Dang, Zhiya ;
Qi, Yong-Xin ;
Lun, Ning ;
Bai, Yu -Jun .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (02) :1426-1436
[4]   High-Performance Li(Li0.18Ni0.15Co0.15Mn0.52)O2@Li4M5O12 Heterostructured Cathode Material Coated with a Lithium Borate Oxide Glass Layer [J].
Bian, Xiaofei ;
Fu, Qiang ;
Qiu, Hailong ;
Du, Fei ;
Gao, Yu ;
Zhang, Lijie ;
Zou, Bo ;
Chen, Gang ;
Wei, Yingjin .
CHEMISTRY OF MATERIALS, 2015, 27 (16) :5745-5754
[5]   Super high-rate, long cycle life of europium-modified, carbon-coated, hierarchical mesoporous lithium-titanate anode materials for lithium ion batteries [J].
Cai, Yanjun ;
Huang, Yudai ;
Jia, Wei ;
Wang, Xingchao ;
Guo, Yong ;
Jia, Dianzeng ;
Sun, Zhipeng ;
Pang, Weikong ;
Guo, Zaiping .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (25) :9949-9957
[6]   Enhanced high-temperature cycling of Li2O-2B2O3-coated spinel-structured LiNi0.5Mn1.5O4 cathode material for application to lithium-ion batteries [J].
Chae, Ji Su ;
Yoon, Seung-Beom ;
Yoon, Won-Sub ;
Kang, Yong-Mook ;
Park, Sun-Min ;
Lee, Jae-Won ;
Roh, Kwang Chul .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 601 :217-222
[7]   Synergistic Effects of Stabilizing the Surface Structure and Lowering the Interface Resistance in Improving the Low-Temperature Performances of Layered Lithium-Rich Materials [J].
Chen, Shi ;
Chen, Lai ;
Li, Yitong ;
Su, Yuefeng ;
Lu, Yun ;
Bao, Liying ;
Wang, Jing ;
Wang, Meng ;
Wu, Feng .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (10) :8641-8648
[8]   Self-supported Li4Ti5O12 nanosheet arrays for lithium ion batteries with excellent rate capability and ultralong cycle life [J].
Chen, Shuai ;
Xin, Yuelong ;
Zhou, Yiyang ;
Ma, Yurong ;
Zhou, Henghui ;
Qi, Limin .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (06) :1924-1930
[9]   Electrochemical properties of Li2O-2B2O3 glass-modified LiMn2O4 powders prepared by spray pyrolysis process [J].
Choi, Seung Ho ;
Kim, Jung Hyun ;
Ko, You Na ;
Hong, Young Jun ;
Kang, Yun Chan .
JOURNAL OF POWER SOURCES, 2012, 210 :110-115
[10]   Kinetic analysis of the Li+ ion intercalation behavior of solution derived nano-crystalline lithium manganate thin films [J].
Das, SR ;
Majumder, SB ;
Katiyar, RS .
JOURNAL OF POWER SOURCES, 2005, 139 (1-2) :261-268