BertiniLab: A MATLAB interface for solving systems of polynomial equations

被引:11
作者
Bates, Daniel J. [1 ]
Newell, Andrew J. [2 ]
Niemerg, Matthew [3 ,4 ]
机构
[1] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
[2] N Carolina State Univ, Dept Marine Earth & Atmospher Sci, Campus Box 8208, Raleigh, NC 27695 USA
[3] Univ Calif Berkeley, Simons Inst Theory Comp, Berkeley, CA 94720 USA
[4] Tsinghua Univ, Inst Interdisciplinary Informat Sci, Beijing 100084, Peoples R China
基金
美国国家科学基金会;
关键词
Polynomial system; Numerical algebraic geometry; Bertini; MATLAB; NUMERICAL ALGEBRAIC-GEOMETRY; HOMOTOPIES; PHCPACK;
D O I
10.1007/s11075-015-0014-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A MATLAB interface to the numerical homotopy continuation package Bertini is described. Bertini solves systems of polynomial equations. BertiniLab can be used to create input files for Bertini, run Bertini and process the solutions. All features of Bertini 1.5 are supported. The user can define the system of equations using a MATLAB numerical function, and vector and matrix operations are allowed. An object-oriented design allows the user to separate the statement of the problem from the details of the solution; the user can create subclasses to provide shortcuts or to tailor BertiniLab to a specific kind of problem. A complete example of an application to ferromagnetism is presented.
引用
收藏
页码:229 / 244
页数:16
相关论文
共 15 条
[1]  
[Anonymous], NUMERICALLY SOLVING
[2]  
Bates D.J., Bertini: Software for Numerical Algebraic Geometry
[3]  
Bates D. J., 2015, PARAMOTOPY PARAMETER
[4]   Perturbed homotopies for finding all isolated solutions of polynomial systems [J].
Bates, Daniel J. ;
Davis, Brent ;
Eklund, David ;
Hanson, Eric ;
Peterson, Chris .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 247 :301-311
[5]  
Guan Y, 2008, IMA VOL MATH APPL, V148, P15
[6]   Computing steady-state solutions for a free boundary problem modeling tumor growth by Stokes equation [J].
Hao, Wenrui ;
Hauenstein, Jonathan D. ;
Hu, Bei ;
McCoy, Timothy ;
Sommese, Andrew J. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 237 (01) :326-334
[7]   REGENERATION HOMOTOPIES FOR SOLVING SYSTEMS OF POLYNOMIALS [J].
Hauenstein, Jonathan D. ;
Sommese, Andrew J. ;
Wampler, Charles W. .
MATHEMATICS OF COMPUTATION, 2011, 80 (273) :345-377
[8]  
Lee T., 2008, HOM4PS 2 0 HOMOTOPY
[9]  
Nam K. M., 2014, PARAMETER GEOGRAPHY
[10]   Transition to superparamagnetism in chains of magnetosome crystals [J].
Newell, A. J. .
GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, 2009, 10