CP tensor-based compression of hyperspectral images

被引:27
作者
Fang, Leyuan [1 ,2 ]
He, Nanjun [1 ]
Lin, Hui [1 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
[2] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
基金
中国国家自然科学基金;
关键词
LOSSLESS COMPRESSION;
D O I
10.1364/JOSAA.34.000252
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, an effective CANDECOMP/PARAFAC tensor-based compression (CPTBC) approach is proposed for on-ground hyperspectral images (HSIs). By considering the observed HSI cube as a whole three-order tensor, the proposed CPTBC method utilizes the CANDECOMP/PARAFAC tensor decomposition to decompose the original HSI data into the sum of R rank-1 tensors, which can simultaneously exploit both the spatial and spectral information of HSIs. Specifically, compared with the original HSI data, the R rank-1 tensors have fewer non-zero entries. In addition, non-zero entries of the R rank-1 tensors are sparse and follow a regular distribution. Therefore, the HSI can be efficiently compressed into R rank-1 tensors with the proposed CPTBC method. Our experimental results on real three HSIs demonstrate the superiority of the proposed CPTBC method over several well-known compression approaches and the average PSNR improvements of the proposed method over the six compared methods (i. e., MPEG4, band-wise JPEG2000, TD, 3D-SPECK, 3D-TCE, 3D-TARP) are more than 13, 10, 6, 4, 3, and 3 dB, respectively. (C) 2017 Optical Society of America
引用
收藏
页码:252 / 258
页数:7
相关论文
共 25 条
[1]   Regression Wavelet Analysis for Lossless Coding of Remote-Sensing Data [J].
Amrani, Naoufal ;
Serra-Sagrista, Joan ;
Laparra, Valero ;
Marcellin, Michael W. ;
Malo, Jesus .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (09) :5616-5627
[2]   Cost and Scalability Improvements to the Karhunen-Loeve Transform for Remote-Sensing Image Coding [J].
Blanes, Ian ;
Serra-Sagrista, Joan .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (07) :2854-2863
[3]   Gradient pursuits [J].
Blumensath, Thomas ;
Davies, Mike E. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (06) :2370-2382
[4]   ANALYSIS OF INDIVIDUAL DIFFERENCES IN MULTIDIMENSIONAL SCALING VIA AN N-WAY GENERALIZATION OF ECKART-YOUNG DECOMPOSITION [J].
CARROLL, JD ;
CHANG, JJ .
PSYCHOMETRIKA, 1970, 35 (03) :283-&
[5]   A multilinear singular value decomposition [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1253-1278
[6]   On the best rank-1 and rank-(R1,R2,...,RN) approximation of higher-order tensors [J].
De Lathauwer, L ;
De Moor, B ;
Vandewalle, J .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (04) :1324-1342
[7]   Anomaly-Based JPEG2000 Compression of Hyperspectral Imagery [J].
Du, Qian ;
Zhu, Wei ;
Fowler, James E. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2008, 5 (04) :696-700
[8]   An Operational Approach to PCA+JPEG2000 Compression of Hyperspectral Imagery [J].
Du, Qian ;
Ly, Nam ;
Fowler, James E. .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) :2237-2245
[9]   Hyperspectral agricultural mapping using Support Vector Machine-Based Endmember Extraction (SVM-BEE) [J].
Filippi, Anthony M. ;
Archibald, Rick ;
Bhaduri, Budhendra L. ;
Bright, Edward A. .
OPTICS EXPRESS, 2009, 17 (26) :23823-23842
[10]  
Grahn H., 2007, TECHNIQUES APPL HYPE, DOI DOI 10.1002/