Improving Lung Lesion Detection in Low Dose Positron Emission Tomography Images Using Machine Learning

被引:0
|
作者
Nai, Yinghwey [1 ]
Schaefferkoetter, Joshua D. [1 ]
Fakhry-Darian, Daniel [1 ]
Conti, Maurizio [2 ]
Shi, Xinmei [1 ,3 ]
Townsend, David W. [1 ,4 ]
Sinha, Arvind K. [4 ]
Tham, Ivan [1 ,3 ]
Alexander, Daniel C. [5 ,6 ,7 ]
Reilhac, Anthonin [1 ]
机构
[1] A STAR NUS, Clin Imaging Res Ctr, Singapore, Singapore
[2] Siemens Med Solut USA Inc, Mol Imaging, Knoxville, TN USA
[3] Natl Univ Canc Inst, Dept Radiat Oncol, Singapore, Singapore
[4] Natl Univ Singapore Hosp, Dept Diagnost Radiol, Singapore, Singapore
[5] UCL, Ctr Med Image Comp, London, England
[6] UCL, Dept Comp Sci, London, England
[7] Natl Univ Singapore, Clin Imaging Res Ctr, Singapore, Singapore
来源
2018 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE PROCEEDINGS (NSS/MIC) | 2018年
关键词
Image Quality Transfer; Lesion Detection; Lung Cancer; Machine Learning; Positron Emission Tomography;
D O I
暂无
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Lung cancer suffers from poor prognosis, leading to high death rates. Combined PET/CT improves lung lesion detection but requires low dose protocols for frequent disease screening and monitoring. In this study, we investigate the feasibility of using machine learning to improve low dose PET images to standard dose, high-quality images for better lesion detection at low dose PET scans. We employ image quality transfer (IQT), which is a machine learning algorithm that uses patch-regression to map parameters from low to high-quality images e.g. enhancing resolution or information content. We acquired 20 standard dose PET images and simulated low dose PET images with 9 different count levels from the standard dose PET images. For each count levels, 10 pairs of standard dose PET images with one simulated low dose PET images were used to train linear, single non-linear regression tree, and random regression-forest models for IQT. The models were then used to estimate standard dose images from low dose images for each count levels for 10 different subjects. Improvement in image quality and lesion detection could be observed in the images estimated from the low dose images using IQT. Among the models employed, the regression tree model produced the best estimates of standard dose PET images. An average bias of less than 20% in SUVmean of 25 lesions in the estimated images from the standard dose PET images can be obtained down to 7.5 x 10(6) counts. Overall, despite the increase in bias, the improvement in image quality shows the potential of IQT in improving the accuracy in lesion detection.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Improving Spoofed Website Detection Using Machine Learning
    Gandotra, Ekta
    Gupta, Deepak
    CYBERNETICS AND SYSTEMS, 2021, 52 (02) : 169 - 190
  • [42] Achieving Very-Low-Dose Radiation Exposure in Cardiac Computed Tomography, Single-Photon Emission Computed Tomography, and Positron Emission Tomography
    Dey, Damini
    Slomka, Piotr J.
    Berman, Daniel S.
    CIRCULATION-CARDIOVASCULAR IMAGING, 2014, 7 (04) : 723 - 734
  • [43] Prostate specific membrane antigen positron emission tomography for lesion-directed high-dose-rate brachytherapy dose escalation
    Smith, Christopher W.
    Alfano, Ryan
    Hoover, Douglas
    Surry, Kathleen
    D'Souza, David
    Thiessen, Jonathan
    Rachinsky, Irina
    Butler, John
    Gomez, Jose A.
    Gaed, Mena
    Moussa, Madeleine
    Chin, Joseph
    Pautler, Stephen
    Bauman, Glenn S.
    Ward, Aaron D.
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2021, 19 : 102 - 107
  • [44] Detection of metastatic disease in patients with uveal melanoma using positron emission tomography
    Francken, A. B.
    Fulham, M. J.
    Millward, M. J.
    Thompson, J. F.
    EJSO, 2006, 32 (07): : 780 - 784
  • [45] In-vivo detection of the erythropoietin receptor in tumours using positron emission tomography
    Felix Fuge
    Dennis Doleschel
    Anne Rix
    Felix Gremse
    Axel Wessner
    Oliver Winz
    Felix Mottaghy
    Wiltrud Lederle
    Fabian Kiessling
    European Radiology, 2015, 25 : 472 - 479
  • [46] Detection of lung cancer in patients with pneumoconiosis by fluorodeoxyglucose-positron emission tomography/computed tomography: four cases
    Yu, Hua
    Zhang, Hua
    Wang, Yanli
    Cui, Xinjian
    Han, Jiankui
    CLINICAL IMAGING, 2013, 37 (04) : 769 - 771
  • [47] In-vivo detection of the erythropoietin receptor in tumours using positron emission tomography
    Fuge, Felix
    Doleschel, Dennis
    Rix, Anne
    Gremse, Felix
    Wessner, Axel
    Winz, Oliver
    Mottaghy, Felix
    Lederle, Wiltrud
    Kiessling, Fabian
    EUROPEAN RADIOLOGY, 2015, 25 (02) : 472 - 479
  • [48] Evaluation of lesion in a spontaneous osteonecrosis of the knee using 18F-fluoride positron emission tomography
    Aratake, Masato
    Yoshifumi, Tayama
    Takahashi, Akira
    Takeuchi, Ryohei
    Inoue, Tomio
    Saito, Tomoyuki
    KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, 2009, 17 (01) : 53 - 59
  • [49] Assessment of ultrasmall nanocluster for early and accurate detection of atherosclerosis using positron emission tomography/computed tomography
    Sultan, Deborah
    Li, Wenjun
    Detering, Lisa
    Heo, Gyu Seong
    Luehmann, Hannah P.
    Kreisel, Daniel
    Liu, Yongjian
    NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2021, 36
  • [50] Investigation of small lung lesion detection for lung cancer screening in low dose FDG PET imaging by deep neural networks
    Guo, Haijun
    Wu, Jun
    Xie, Zongneng
    Tham, Ivan W. K.
    Zhou, Long
    Yan, Jianhua
    FRONTIERS IN PUBLIC HEALTH, 2022, 10