Improving Lung Lesion Detection in Low Dose Positron Emission Tomography Images Using Machine Learning

被引:0
|
作者
Nai, Yinghwey [1 ]
Schaefferkoetter, Joshua D. [1 ]
Fakhry-Darian, Daniel [1 ]
Conti, Maurizio [2 ]
Shi, Xinmei [1 ,3 ]
Townsend, David W. [1 ,4 ]
Sinha, Arvind K. [4 ]
Tham, Ivan [1 ,3 ]
Alexander, Daniel C. [5 ,6 ,7 ]
Reilhac, Anthonin [1 ]
机构
[1] A STAR NUS, Clin Imaging Res Ctr, Singapore, Singapore
[2] Siemens Med Solut USA Inc, Mol Imaging, Knoxville, TN USA
[3] Natl Univ Canc Inst, Dept Radiat Oncol, Singapore, Singapore
[4] Natl Univ Singapore Hosp, Dept Diagnost Radiol, Singapore, Singapore
[5] UCL, Ctr Med Image Comp, London, England
[6] UCL, Dept Comp Sci, London, England
[7] Natl Univ Singapore, Clin Imaging Res Ctr, Singapore, Singapore
来源
2018 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE PROCEEDINGS (NSS/MIC) | 2018年
关键词
Image Quality Transfer; Lesion Detection; Lung Cancer; Machine Learning; Positron Emission Tomography;
D O I
暂无
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Lung cancer suffers from poor prognosis, leading to high death rates. Combined PET/CT improves lung lesion detection but requires low dose protocols for frequent disease screening and monitoring. In this study, we investigate the feasibility of using machine learning to improve low dose PET images to standard dose, high-quality images for better lesion detection at low dose PET scans. We employ image quality transfer (IQT), which is a machine learning algorithm that uses patch-regression to map parameters from low to high-quality images e.g. enhancing resolution or information content. We acquired 20 standard dose PET images and simulated low dose PET images with 9 different count levels from the standard dose PET images. For each count levels, 10 pairs of standard dose PET images with one simulated low dose PET images were used to train linear, single non-linear regression tree, and random regression-forest models for IQT. The models were then used to estimate standard dose images from low dose images for each count levels for 10 different subjects. Improvement in image quality and lesion detection could be observed in the images estimated from the low dose images using IQT. Among the models employed, the regression tree model produced the best estimates of standard dose PET images. An average bias of less than 20% in SUVmean of 25 lesions in the estimated images from the standard dose PET images can be obtained down to 7.5 x 10(6) counts. Overall, despite the increase in bias, the improvement in image quality shows the potential of IQT in improving the accuracy in lesion detection.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] F-18 fluorodeoxyglucose positron emission tomography/computed tomography images of severe primary lung lymphoma
    Koc, Zehra Pinar
    Kara, Pelin Ozcan
    Ozge, Cengiz
    Yaldiz, Mehmet
    INDIAN JOURNAL OF NUCLEAR MEDICINE, 2020, 35 (01): : 80 - 81
  • [32] Detection of osteomyelitis using 18FDG and positron emission tomography
    Temmerman, OPP
    Heyligers, IC
    Hoekstra, OS
    Comans, EFI
    Roos, JC
    JOURNAL OF ARTHROPLASTY, 2001, 16 (02) : 243 - 246
  • [33] Detection of Lung Nodules Using Unsupervised Machine Learning Method
    Kishore, Raj
    Satpathy, Manoranjan
    Parida, D. K.
    Nussinov, Zohar
    Sahu, Kisor K.
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING, 2020, 1108 : 463 - 471
  • [34] Detection of unknown occult primary tumors using positron emission tomography
    Kole, AC
    Nieweg, OE
    Pruim, J
    Hoekstra, HJ
    Koops, HS
    Roodenburg, JLN
    Vaalburg, W
    Vermey, A
    CANCER, 1998, 82 (06) : 1160 - 1166
  • [35] Methodological evaluation of original articles on radiomics and machine learning for outcome prediction based on positron emission tomography (PET)
    Rogasch, Julian Manuel Michael
    Shi, Kuangyu
    Kersting, David
    Seifert, Robert
    NUKLEARMEDIZIN-NUCLEAR MEDICINE, 2023, 62 (06): : 361 - 369
  • [36] Improving Detection Rate Using Misuse Detection and Machine Learning
    Rajpal, Rohini
    Kaur, Sanmeet
    Kaur, Ramandeep
    PROCEEDINGS OF THE 2016 SAI COMPUTING CONFERENCE (SAI), 2016, : 1131 - 1135
  • [37] GEOMETRICAL FEATURE OF LUNG LESION IDENTIFICATION USING COMPUTED TOMOGRAPHY SCAN IMAGES
    Abdullah, Mohd Firdaus
    Sulaiman, Siti Noraini
    Osman, Muhammad Khusairi
    Karim, Noor Khairiah A.
    Setumin, Samsul
    Isa, Iza Sazanita
    Ani, Adi Izhar Che
    JURNAL TEKNOLOGI-SCIENCES & ENGINEERING, 2023, 85 (02): : 149 - 156
  • [38] Deep Learning for Explainable Estimation of Mortality Risk From Myocardial Positron Emission Tomography Images
    Singh, Ananya
    Kwiecinski, Jacek
    Miller, Robert J. H.
    Otaki, Yuka
    Kavanagh, Paul B.
    Van Kriekinge, Serge D.
    Parekh, Tejas
    Gransar, Heidi
    Pieszko, Konrad
    Killekar, Aditya
    Tummala, Ramyashree
    Liang, Joanna X.
    Di Carli, Marcelo F.
    Berman, Daniel S.
    Dey, Damini
    Slomka, Piotr J.
    CIRCULATION-CARDIOVASCULAR IMAGING, 2022, 15 (09) : 645 - 655
  • [39] Classification of Positron Emission Tomography Brain Images using first and second derivative features
    Garali, Imene
    Adel, Mouloud
    Bourennane, Salah
    Guedj, Eric
    PROCEEDINGS OF THE 2016 6TH EUROPEAN WORKSHOP ON VISUAL INFORMATION PROCESSING (EUVIP), 2016,
  • [40] Leptomeningeal carcinomatosis and intramedullary spinal cord metastases from lung cancer detection with FDG positron emission tomography
    Komori, T
    Delbeke, D
    CLINICAL NUCLEAR MEDICINE, 2001, 26 (11) : 905 - 907