A ZnO-graphene hybrid with remarkably enhanced lithium storage capability

被引:59
作者
Li, Shuang [1 ]
Xiao, Ying [1 ]
Wang, Xia [1 ]
Cao, Minhua [1 ]
机构
[1] Beijing Inst Technol, Beijing Key Lab Photoelect Electrophon Convers Ma, Key Lab Cluster Sci, Minist Educ China,Dept Chem, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
IMPROVED REVERSIBLE CAPACITY; ANODE MATERIALS; ELECTROCHEMICAL PERFORMANCE; CYCLIC PERFORMANCE; FACILE SYNTHESIS; ION BATTERIES; COMPOSITE; NANOSHEETS; CARBON; NANOCOMPOSITE;
D O I
10.1039/c4cp03964e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, a ZnO-graphene (ZnO-GN) hybrid is successfully synthesized from graphene oxide (GO) and zinc hydroxide [Zn(OH)(2)] by a facile freeze drying treatment and subsequent heat treatment method. The uniform ZnO nanoparticles (NPs) with a diameter less than 10 nm were uniformly anchored on a nitrogen-doped conductive GN matrix to form a ZnO-GN hybrid. Moreover, various ZnO-GN hybrids with different ZnO loading amounts are fabricated by changing the dosage of Zn(OH)(2). When used as an anode material for lithium ion batteries (LIBs), the hybrid showed unprecedentedly enhanced cycling stability and rate performance. More remarkably, the optimized ZnO-GN hybrid achieved an ultrahigh reversible capacity of 900 mA h g(-1), close to the theoretical capacity (978 mA h g(-1)) of ZnO after 100 cycles at a current density of 100 mA g(-1), which so far has been proved to be the best result among all ZnO-GN-based electrode materials. As a result, we attributed the excellent performance to the incorporation of the conductive nitrogen-doped GN matrix and the synergetic effect between GN sheets and ZnO NPs.
引用
收藏
页码:25846 / 25853
页数:8
相关论文
共 47 条
[11]   Electrochemical performance of MWCNT reinforced ZnO anodes for Li-ion batteries [J].
Guler, Mehmet Oguz ;
Cetinkaya, Tugrul ;
Tocoglu, Ubeyd ;
Akbulut, Hatem .
MICROELECTRONIC ENGINEERING, 2014, 118 :54-60
[12]   Graphene: A Two-Dimensional Platform for Lithium Storage [J].
Han, Sheng ;
Wu, Dongqing ;
Li, Shuang ;
Zhang, Fan ;
Feng, Xinliang .
SMALL, 2013, 9 (08) :1173-1187
[13]   Synthesis of ZnO@Graphene composites as anode materials for lithium ion batteries [J].
Hsieh, Chien-Te ;
Lin, Chi-Yuan ;
Chen, Yu-Fu ;
Lin, Jiun-Sheng .
ELECTROCHIMICA ACTA, 2013, 111 :359-365
[14]   Mesoporous ZnO nanosheets for lithium ion batteries [J].
Huang, X. H. ;
Guo, R. Q. ;
Wu, J. B. ;
Zhang, P. .
MATERIALS LETTERS, 2014, 122 :82-85
[15]   Fabrication of single-phase titanium carbide layers from MWCNTs using high DC pulse [J].
Kim, Woo Sik ;
Moon, Sook Young ;
Lee, Jeong Hoon ;
Bang, Sin Young ;
Choi, Bong Geun ;
Ham, Heon ;
Sekino, Tohru ;
Shim, Kwang Bo .
NANOTECHNOLOGY, 2010, 21 (05)
[16]   Leapfrog Cracking and Nanoamorphization of ZnO Nanowires during In Situ Electrochemical Lithiation [J].
Kushima, Akihiro ;
Liu, Xiao Hua ;
Zhu, Guang ;
Wang, Zhong Lin ;
Huang, Jian Yu ;
Li, Ju .
NANO LETTERS, 2011, 11 (11) :4535-4541
[17]   Hydrothermal self-assembly of hierarchical flower-like ZnO nanospheres with nanosheets and their application in Li-ion batteries [J].
Li, Feng ;
Yang, Linlin ;
Xu, Gang ;
Huang Xiaoqiang ;
Yang, Xin ;
Wei, Xiao ;
Ren, Zhaohui ;
Shen, Ge ;
Han, Gaorong .
JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 577 :663-668
[18]  
Liang YY, 2011, NAT MATER, V10, P780, DOI [10.1038/NMAT3087, 10.1038/nmat3087]
[19]   Carbon/ZnO Nanorod Array Electrode with Significantly Improved Lithium Storage Capability [J].
Liu, Jinping ;
Li, Yuanyuan ;
Ding, Ruimin ;
Jiang, Jian ;
Hu, Yingying ;
Ji, Xiaoxu ;
Chi, Qingbo ;
Zhu, Zhihong ;
Huang, Xintang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (13) :5336-5339
[20]   A review on the key issues for lithium-ion battery management in electric vehicles [J].
Lu, Languang ;
Han, Xuebing ;
Li, Jianqiu ;
Hua, Jianfeng ;
Ouyang, Minggao .
JOURNAL OF POWER SOURCES, 2013, 226 :272-288