Performance Pathologies in Hardware Transactional Memory

被引:0
|
作者
Bobba, Jayaram [1 ]
Moore, Kevin E. [1 ]
Volos, Haris [1 ]
Yen, Luke [1 ]
Hill, Mark D. [1 ]
Swift, Michael M. [1 ]
Wood, David A. [1 ]
机构
[1] Univ Wisconsin, Dept Comp Sci, Madison, WI 53706 USA
关键词
Transactional memory; hardware; performance; pathology; contention management;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Hardware Transactional Memory (HTM) systems reflect choices from three key design dimensions: conflict detection, version management, and conflict resolution. Previously proposed HTMs represent three points in this design space: lazy conflict detection, lazy version management, committer wins (LL); eager conflict detection, lazy version management, requester wins (EL); and eager conflict detection, eager version management, and requester stalls with conservative deadlock avoidance (EE). To isolate the effects of these high-level design decisions, we develop a common framework that abstracts away differences in cache write policies, interconnects, and ISA to compare these three design points. Not surprisingly, the relative performance of these systems depends on the workload. Under light transactional loads they perform similarly, but under heavy loads they differ by up to 80%. None of the systems performs best on all of our benchmarks. We identify seven performance pathologies-interactions between workload and system that degrade performance-as the root cause of many performance differences: FRIENDLYFIRE, STARVINGWRITER, SERIALIZEDCOMMIT, FUTILESTALL, STARVINGELDER, RESTARTCONVOY, and DUELINGUPGRADES. We discuss when and on which systems these pathologies can occur and show that they actually manifest within TM workloads. The insight provided by these pathologies motivated four enhanced systems that often significantly reduce transactional memory overhead. Importantly, by avoiding transaction pathologies, each enhanced system performs well across our suite of benchmarks.
引用
收藏
页码:81 / 91
页数:11
相关论文
共 50 条
  • [1] Performance pathologies in hardware transactional memory
    Bobba, Jayaram
    Moore, Kevin E.
    Volos, Haris
    Yen, Luke
    Hill, Mark D.
    Swift, Michael M.
    Wood, David A.
    IEEE MICRO, 2008, 28 (01) : 32 - 41
  • [2] Using A Runtime to Overcome The Pathologies in Hardware Transactional Memory Systems
    Yan, Zhichao
    Feng, Dan
    Tan, Yujuan
    JOURNAL OF COMPUTERS, 2013, 8 (01) : 18 - 26
  • [3] Improving Performance by Reducing Aborts in Hardware Transactional Memory
    Ansari, Mohammad
    Khan, Behram
    Lujan, Mikel
    Kotselidis, Christos
    Kirkham, Chris
    Watson, Ian
    HIGH PERFORMANCE EMBEDDED ARCHITECTURES AND COMPILERS, PROCEEDINGS, 2010, 5952 : 35 - +
  • [4] Deploying Hardware Locks to Improve Performance and Energy Efficiency of Hardware Transactional Memory
    Gaona, Epifanio
    Abellan, Jose L.
    Acacio, Manuel E.
    Fernandez, Juan
    ARCHITECTURE OF COMPUTING SYSTEMS - ARCS 2013, 2013, 7767 : 220 - 231
  • [5] Hardware Transactional Persistent Memory
    Giles, Ellis
    Doshi, Kshitij
    Varman, Peter
    PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON MEMORY SYSTEMS (MEMSYS 2018), 2018, : 190 - 205
  • [6] Fun with Hardware Transactional Memory
    Herlihy, Maurice
    SIGMOD'14: PROCEEDINGS OF THE 2014 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2014, : 575 - 575
  • [7] Hardware transactional memory: A high performance parallel programming model
    Fu, Chen
    Wen, Dongxin
    Wang, Xiaoqun
    Yang, Xiaozong
    JOURNAL OF SYSTEMS ARCHITECTURE, 2010, 56 (08) : 384 - 391
  • [8] Hardware Transactional Memory meets memory persistency
    Castro, Daniel
    Romano, Paolo
    Barreto, Joao
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2019, 130 : 63 - 79
  • [9] Hardware Transactional Memory meets Memory Persistency
    Castro, Daniel
    Romano, Paolo
    Barreto, Joao
    2018 32ND IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM (IPDPS), 2018, : 368 - 377
  • [10] Improving Parallelism in Hardware Transactional Memory
    Dice, Dave
    Herlihy, Maurice
    Kogan, Alex
    ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2018, 15 (01)