Organic aerosol concentration and composition over Europe: insights from comparison of regional model predictions with aerosol mass spectrometer factor analysis

被引:57
作者
Fountoukis, C. [1 ]
Megaritis, A. G. [2 ]
Skyllakou, K. [2 ]
Charalampidis, P. E. [3 ]
Pilinis, C. [3 ]
van der Gon, H. A. C. Denier [4 ]
Crippa, M. [5 ]
Canonaco, F. [5 ]
Mohr, C. [5 ]
Prevot, A. S. H. [5 ]
Allan, J. D. [6 ,7 ]
Poulain, L. [8 ]
Petaja, T. [9 ]
Tiitta, P. [10 ,11 ]
Carbone, S. [12 ]
Kiendler-Scharr, A. [13 ]
Nemitz, E. [14 ]
O'Dowd, C. [15 ,16 ]
Swietlicki, E. [17 ]
Pandis, S. N. [2 ,18 ]
机构
[1] Fdn Res & Technol Hellas FORTH, Inst Chem Engn Sci, Patras, Greece
[2] Univ Patras, Dept Chem Engn, GR-26110 Patras, Greece
[3] Univ Aegean, Dept Environm, Mitilini, Greece
[4] Netherlands Org Appl Sci Res TNO, Utrecht, Netherlands
[5] Paul Scherrer Inst, Lab Atmospher Chem, Villigen, Switzerland
[6] Univ Manchester, Natl Ctr Atmospher Sci, Manchester, Lancs, England
[7] Univ Manchester, Sch Earth Atmospher & Environm Sci, Manchester, Lancs, England
[8] Leibniz Inst Tropospher Res, Leipzig, Germany
[9] Univ Helsinki, Dept Phys, FIN-00014 Helsinki, Finland
[10] Univ Eastern Finland, Dept Environm Sci, Kuopio, Finland
[11] Univ Eastern Finland, Dept Appl Phys, Kuopio, Finland
[12] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland
[13] Forschungszentrum Julich, Inst Energie & Klimaforsch Troposphare IEK 8, D-52425 Julich, Germany
[14] Ctr Ecol & Hydrol, Penicuik EH26 0QB, Midlothian, Scotland
[15] Natl Univ Ireland, Sch Phys, Galway, Ireland
[16] Natl Univ Ireland, Ctr Climate & Air Pollut Studies, Galway, Ireland
[17] Lund Univ, Div Nucl Phys, S-22100 Lund, Sweden
[18] Carnegie Mellon Univ, Dept Chem Engn, Pittsburgh, PA 15213 USA
基金
欧盟第七框架计划; 欧洲研究理事会;
关键词
BASIS-SET APPROACH; POSITIVE MATRIX FACTORIZATION; QUALITY INTERACTIONS EUCAARI; SOURCE APPORTIONMENT; CHEMICAL-COMPOSITION; MULTILINEAR ENGINE; INTEGRATED PROJECT; CLOUD CLIMATE; FINE PM; OXIDATION;
D O I
10.5194/acp-14-9061-2014
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A detailed three-dimensional regional chemical transport model (Particulate Matter Comprehensive Air Quality Model with Extensions, PMCAMx) was applied over Europe, focusing on the formation and chemical transformation of organic matter. Three periods representative of different seasons were simulated, corresponding to intensive field campaigns. An extensive set of AMS measurements was used to evaluate the model and, using factor-analysis results, gain more insight into the sources and transformations of organic aerosol (OA). Overall, the agreement be-tween predictions and measurements for OA concentration is encouraging, with the model reproducing two-thirds of the data (daily average mass concentrations) within a factor of 2. Oxygenated OA (OOA) is predicted to contribute 93% to total OA during May, 87% during winter and 96% during autumn, with the rest consisting of fresh primary OA (POA). Predicted OOA concentrations compare well with the observed OOA values for all periods, with an average fractional error of 0.53 and a bias equal to -0.07 (mean error = 0.9 mu g m(-3), mean bias =-0.2 mu g m(-3)). The model systematically underpredicts fresh POA at most sites during late spring and autumn (mean bias up to -0.8 mu g m(-3)). Based on results from a source apportionment algorithm running in parallel with PMCAMx, most of the POA originates from biomass burning (fires and residential wood combustion), and therefore biomass burning OA is most likely underestimated in the emission inventory. The sensitivity of POA predictions to the corresponding emissions' volatility distribution is discussed. The model performs well at all sites when the Positive Matrix Factorization (PMF)-estimated low-volatility OOA is compared against the OA with saturation concentrations of the OA surrogate species C* <= 0.1 mu g m(-3) and semivolatile OOA against the OA with C* > 0.1 mu g m(-3).
引用
收藏
页码:9061 / 9076
页数:16
相关论文
共 68 条
[1]   Modeling SOA formation from the oxidation of intermediate volatility n-alkanes [J].
Aumont, B. ;
Valorso, R. ;
Mouchel-Vallon, C. ;
Camredon, M. ;
Lee-Taylor, J. ;
Madronich, S. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (16) :7577-7589
[2]   Modelling of organic aerosols over Europe (2002-2007) using a volatility basis set (VBS) framework: application of different assumptions regarding the formation of secondary organic aerosol [J].
Bergstrom, R. ;
van der Gon, H. A. C. Denier ;
Prevot, A. S. H. ;
Yttri, K. E. ;
Simpson, D. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (18) :8499-8527
[3]   Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer [J].
Canagaratna, M. R. ;
Jayne, J. T. ;
Jimenez, J. L. ;
Allan, J. D. ;
Alfarra, M. R. ;
Zhang, Q. ;
Onasch, T. B. ;
Drewnick, F. ;
Coe, H. ;
Middlebrook, A. ;
Delia, A. ;
Williams, L. R. ;
Trimborn, A. M. ;
Northway, M. J. ;
DeCarlo, P. F. ;
Kolb, C. E. ;
Davidovits, P. ;
Worsnop, D. R. .
MASS SPECTROMETRY REVIEWS, 2007, 26 (02) :185-222
[4]   SoFi, an IGOR-based interface for the efficient use of the generalized multilinear engine (ME-2) for the source apportionment: ME-2 application to aerosol mass spectrometer data [J].
Canonaco, F. ;
Crippa, M. ;
Slowik, J. G. ;
Baltensperger, U. ;
Prevot, A. S. H. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2013, 6 (12) :3649-3661
[5]   Multi-generation gas-phase oxidation, equilibrium partitioning, and the formation and evolution of secondary organic aerosol [J].
Cappa, C. D. ;
Wilson, K. R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (20) :9505-9528
[6]   CMAQ Model Performance Enhanced When In-Cloud Secondary Organic Aerosol is Included: Comparisons of Organic Carbon Predictions with Measurements [J].
Carlton, Annmarie G. ;
Turpin, Barbara J. ;
Altieri, Katye E. ;
Seitzinger, Sybil P. ;
Mathur, Rohit ;
Roselle, Shawn J. ;
Weber, Rodney J. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (23) :8798-8802
[7]  
Carter W.P.L., 2010, PROGRAMS FILES IMPLE
[8]   Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach [J].
Crippa, M. ;
Canonaco, F. ;
Lanz, V. A. ;
Aijala, M. ;
Allan, J. D. ;
Carbone, S. ;
Capes, G. ;
Ceburnis, D. ;
Dall'Osto, M. ;
Day, D. A. ;
DeCarlo, P. F. ;
Ehn, M. ;
Eriksson, A. ;
Freney, E. ;
Hildebrandt Ruiz, L. ;
Hillamo, R. ;
Jimenez, J. L. ;
Junninen, H. ;
Kiendler-Scharr, A. ;
Kortelainen, A. -M. ;
Kulmala, M. ;
Laaksonen, A. ;
Mensah, A. ;
Mohr, C. ;
Nemitz, E. ;
O'Dowd, C. ;
Ovadnevaite, J. ;
Pandis, S. N. ;
Petaja, T. ;
Poulain, L. ;
Saarikoski, S. ;
Sellegri, K. ;
Swietlicki, E. ;
Tiitta, P. ;
Worsnop, D. R. ;
Baltensperger, U. ;
Prevot, A. S. H. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (12) :6159-6176
[9]  
Denier van der Gon H., 2014, PARTICULATE EM UNPUB
[10]   A two-dimensional volatility basis set: 1. organic-aerosol mixing thermodynamics [J].
Donahue, N. M. ;
Epstein, S. A. ;
Pandis, S. N. ;
Robinson, A. L. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (07) :3303-3318