THE SPECTRUM OF DELAY DIFFERENTIAL EQUATIONS WITH MULTIPLE HIERARCHICAL LARGE DELAYS

被引:7
作者
Ruschel, Stefan [1 ]
Yanchuk, Serhiy [2 ]
机构
[1] Univ Auckland, Dept Math, Auckland 1142, New Zealand
[2] Tech Univ Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2021年 / 14卷 / 01期
关键词
Linear Delay Differential Equations; Large Delay; Multiple Delays; STABILITY; MODEL; ZEROS;
D O I
10.3934/dcdss.2020321
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the spectrum of the linear delay differential equation x'(t) = A(0)x(t) + A(1)x(t - tau(1)) -+ ... +A(n)x(t - tau(n)) with multiple hierarchical large delays 1 << tau(1) << tau(2) << ... << tau(n) splits into two distinct parts: the strong spectrum and the pseudo-continuous spectrum. As the delays tend to infinity, the strong spectrum converges to specific eigenvalues of A(0), the so-called asymptotic strong spectrum. Eigenvalues in the pseudo-continuous spectrum however, converge to the imaginary axis. We show that after rescaling, the pseudo-continuous spectrum exhibits a hierarchical structure corresponding to the time-scales tau(1), tau(2), ..., tau(n), Each level of this hierarchy is approximated by spectral manifolds that can be easily computed. The set of spectral manifolds comprises the so-called asymptotic continuous spectrum. It is shown that the position of the asymptotic strong spectrum and asymptotic continuous spectrum with respect to the imaginary axis completely determines stability. In particular, a generic destabilization is mediated by the crossing of an n-dimensional spectral manifold corresponding to the timescale tau(n).
引用
收藏
页码:151 / 175
页数:25
相关论文
共 33 条
[1]  
[Anonymous], 2009, Surveys and Tutorials in the Applied Mathematical Sciences
[2]  
[Anonymous], 1963, Differential-Difference Equations
[3]   Information processing using a single dynamical node as complex system [J].
Appeltant, L. ;
Soriano, M. C. ;
Van der Sande, G. ;
Danckaert, J. ;
Massar, S. ;
Dambre, J. ;
Schrauwen, B. ;
Mirasso, C. R. ;
Fischer, I. .
NATURE COMMUNICATIONS, 2011, 2
[4]   Chaos-based communications at high bit rates using commercial fibre-optic links [J].
Argyris, A ;
Syvridis, D ;
Larger, L ;
Annovazzi-Lodi, V ;
Colet, P ;
Fischer, I ;
García-Ojalvo, J ;
Mirasso, CR ;
Pesquera, L ;
Shore, KA .
NATURE, 2005, 438 (7066) :343-346
[5]  
Atay FM, 2010, UNDERST COMPLEX SYST, P45, DOI 10.1007/978-3-642-02329-3_2
[6]   ON THE ZEROS OF EXPONENTIAL POLYNOMIALS [J].
AVELLAR, CE ;
HALE, JK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1980, 73 (02) :434-452
[7]   STABILITY AND BIFURCATIONS OF EQUILIBRIA IN A MULTIPLE-DELAYED DIFFERENTIAL-EQUATION [J].
BELAIR, J ;
CAMPBELL, SA .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1994, 54 (05) :1402-1424
[8]  
Cooke K.L., 1986, Eunkcialaj Ekvacioj, V29, P77
[9]   Analysis of an SEIRS epidemic model with two delays [J].
Cooke, KL ;
vandenDriessche, P .
JOURNAL OF MATHEMATICAL BIOLOGY, 1996, 35 (02) :240-260
[10]   Synchronisation and scaling properties of chaotic networks with multiple delays [J].
D'Huys, Otti ;
Zeeb, Steffen ;
Juengling, Thomas ;
Heiligenthal, Sven ;
Yanchuk, Serhiy ;
Kinzel, Wolfgang .
EPL, 2013, 103 (01)