The number of the maximal triangle-free graphs

被引:11
作者
Balogh, Jozsef [1 ,2 ]
Petrickova, Sarka [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Univ Szeged, Bolyai Inst, H-6720 Szeged, Hungary
基金
美国国家科学基金会;
关键词
D O I
10.1112/blms/bdu059
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Paul Erdos suggested the following problem: Determine or estimate the number of maximal triangle-free graphs on n vertices. Here we show that the number of maximal triangle-free graphs is at most 2(n2)/(8+o(n2)), which matches the previously known lower bound. Our proof uses among others the Ruzsa-Szemeredi triangle-removal lemma, and recent results on characterizing of the structure of independent sets in hypergraphs.
引用
收藏
页码:1003 / 1006
页数:4
相关论文
共 13 条
  • [1] Balogh J., J AM MATH S IN PRESS
  • [2] Balogh J., 2012, J AM MATH SOC
  • [3] Notes on sum-free and related sets
    Cameron, PJ
    Erdos, P
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (1-2) : 95 - 107
  • [4] SUPERSATURATED GRAPHS AND HYPERGRAPHS
    ERDOS, P
    SIMONOVITS, M
    [J]. COMBINATORICA, 1983, 3 (02) : 181 - 192
  • [5] Erds P., 1976, Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Tomo II, P19
  • [6] THE NUMBER OF MAXIMAL INDEPENDENT SETS IN TRIANGLE-FREE GRAPHS
    HUJTER, M
    TUZA, Z
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 1993, 6 (02) : 284 - 288
  • [7] Mantel W., 1907, WISKUNDIGE OPGAVEN, V10, P60
  • [8] McKay B., OPEN PROBLE IN PRESS
  • [9] For which densities are random triangle-free graphs almost surely bipartite?
    Osthus, D
    Prömel, HJ
    Taraz, A
    [J]. COMBINATORICA, 2003, 23 (01) : 105 - 150
  • [10] Ruzsa Imre Z, 1978, C MATH SOC J BOLYAI, V18, P939