H2SO4-doped polybenzimidazole membranes for hydrogen production with acid-alkaline amphoteric water electrolysis

被引:35
作者
Wan, Lei [1 ]
Xu, Ziang [1 ]
Wang, Peican [1 ]
Lin, Yuqun [1 ]
Wang, Baoguo [1 ]
机构
[1] Tsinghua Univ, Dept Chem Engn, State Key Lab Chem Engn, Beijing 100084, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
PBI; Membrane synthesis; Water electrolysis; Hydrogen production; ANION-EXCHANGE MEMBRANE; SOLVATING POLYMER ELECTROLYTE; RENEWABLE ENERGY; BIPOLAR MEMBRANE; TEMPERATURE; VANADIUM; CELL; CONDUCTIVITY; GENERATION;
D O I
10.1016/j.memsci.2020.118642
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Acid-alkaline amphoteric water electrolysis is considered as a potential approach for efficient hydrogen production at industrial scale; however, to date synthesized or post-functionized polymer for constructing membranes can hardly meet the requirement of either electrolysis performance or durability aspects. Herein, we synthesize a series of H2SO4-doped PBI-based membranes, including poly (2,2 '-(m-phenylene)-5,5 '-bibenzimidazole) (m-PBI) and poly (4,4 '-diphenylether-5,5 '-bibenzimidazole) (OPBI), for application in acid-alkaline amphoteric water electrolysis system. The H2SO4 doping content, water uptake, swelling ratio, chemical durability and proton conductivity of m-PBI and OPBI membranes are characterized and compared with the perfluorinated sulfonated membrane (Nafion 115). Specifically, the m-PBI membrane doped in 3.0 M H2SO4 attains a current density of 800 mA cm(-2) at cell voltage of 2.0 V at 60 degrees C when applied in an amphoteric water electrolysis, which is superior to the performance of commercial units. Moreover, such system reveals a long-term stability when operating at the current density of 100 mA cm(-2) for 40 h, with an energy consumption of 3.35 kWh m(-3) H-2, offering a possibility for low-energy consumption and scaled hydrogen production technology.
引用
收藏
页数:9
相关论文
共 56 条
[1]   Towards a stable ion-solvating polymer electrolyte for advanced alkaline water electrolysis [J].
Aili, David ;
Wright, Andrew G. ;
Kraglund, Mikkel Rykaer ;
Jankova, Katja ;
Holdcroft, Steven ;
Jensen, Jens Oluf .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (10) :5055-5066
[2]   Structure and environmental impact of global energy consumption [J].
Bilgen, S. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 38 :890-902
[3]   Alkaline-Acid Zn-H2O Fuel Cell for the Simultaneous Generation of Hydrogen and Electricity [J].
Cai, Pingwei ;
Li, Yan ;
Wang, Genxiang ;
Wen, Zhenhai .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (15) :3910-+
[4]   A quaternary ammonium grafted poly vinyl benzyl chloride membrane for alkaline anion exchange membrane water electrolysers with no-noble-metal catalysts [J].
Cao, Yuan-Cheng ;
Wu, Xu ;
Scott, Keith .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (12) :9524-9528
[5]   A highly stable PBI solvent resistant nanofiltration membrane prepared via versatile and simple crosslinking process [J].
Chen, Dongju ;
Yan, Chang ;
Li, Xiaonan ;
Liu, Lin ;
Wu, Danni ;
Li, Xianfeng .
SEPARATION AND PURIFICATION TECHNOLOGY, 2019, 224 :15-22
[6]   Water electrolysis based on renewable energy for hydrogen production [J].
Chi, Jun ;
Yu, Hongmei .
CHINESE JOURNAL OF CATALYSIS, 2018, 39 (03) :390-394
[7]  
Coppola R.E., 2020, RENEWABLE ENERGY
[8]   Alkali-doped polyvinyl alcohol - Polybenzimidazole membranes for alkaline water electrolysis [J].
Diaz, L. A. ;
Coppola, R. E. ;
Abuin, G. C. ;
Escudero-Cid, R. ;
Herranz, D. ;
Ocon, P. .
JOURNAL OF MEMBRANE SCIENCE, 2017, 535 :45-55
[9]   Alkali doped poly (2,5-benzimidazole) membrane for alkaline water electrolysis: Characterization and performance [J].
Diaz, Liliana A. ;
Hnat, Jaromir ;
Heredia, Nayra ;
Bruno, Mariano M. ;
Viva, Federico A. ;
Paidar, Martin ;
Corti, Horacio R. ;
Bouzek, Karel ;
Abuin, Graciela C. .
JOURNAL OF POWER SOURCES, 2016, 312 :128-136
[10]   Enhancing proton conductivity of polybenzimidazole membranes by introducing sulfonate for vanadium redox flow batteries applications [J].
Ding, Liming ;
Song, Xipeng ;
Wang, Lihua ;
Zhao, Zhiping .
JOURNAL OF MEMBRANE SCIENCE, 2019, 578 :126-135