Complexity of tropical Schur polynomials

被引:6
作者
Grigoriev, Dima [1 ]
Koshevoy, Gleb [2 ]
机构
[1] Univ Lille, Math, CNRS, F-59655 Villeneuve Dascq, France
[2] RAS, Cent Inst Econ & Math, Moscow 117418, Russia
关键词
Tropical Schur polynomials; Complexity over the tropical semi-ring;
D O I
10.1016/j.jsc.2015.05.005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
( We study the complexity of computation of a tropical Schur polynomial Ts-lambda where lambda is a partition, and of a tropical polynomial Tm-lambda obtained by the tropicalization of the monomial symmetric function m(lambda). Then TS lambda and Tm-lambda coincide as tropical functions (so, as convex piece-wise linear functions), while differ as tropical polynomials. We prove the following bounds on the complexity of computing over the tropical semi-ring (R, max, +): a polynomial upper bound for Ts-lambda, and an exponential lower bound for Trn(lambda). Also the complexity of tropical skew Schur polynomials is discussed. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:46 / 54
页数:9
相关论文
共 19 条
  • [1] [Anonymous], 1991, Submodular Functions and Optimization
  • [2] B├a┬╝rgisser P., 1997, ALGEBRAIC COMPLEXITY
  • [3] Parametrizations of canonical bases and totally positive matrices
    Berenstein, A
    Fomin, S
    Zelevinsky, A
    [J]. ADVANCES IN MATHEMATICS, 1996, 122 (01) : 49 - 149
  • [4] Discrete strip-concave functions, Gelfand-Tsetlin patterns, and related polyhedra
    Danilov, VI
    Karzanov, AV
    Koshevoy, GA
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2005, 112 (02) : 175 - 193
  • [5] Discrete convexity and unimodularity - I
    Danilov, VI
    Koshevoy, GA
    [J]. ADVANCES IN MATHEMATICS, 2004, 189 (02) : 301 - 324
  • [6] Di Francesco Ph., 2014, ARXIV14061098
  • [7] Edmonds J., 1970, COMBINATORIAL OPTIMI, P69
  • [8] Erds P., 1941, J. Lond. Math. Soc, V16, P212, DOI [10.1112/jlms/s1-16.4.212, DOI 10.1112/JLMS/S1-16.4.212]
  • [9] Fomin S., 2015, FDN COMPUT MATH
  • [10] Fulton William, 1997, LOND MATH SOC STUD T, V35