Keypoint-Based Category-Level Object Pose Tracking from an RGB Sequence with Uncertainty Estimation

被引:15
作者
Lin, Yunzhi [1 ,2 ]
Tremblay, Jonathan [1 ]
Tyree, Stephen [1 ]
Vela, Patricio A. [2 ]
Birchfield, Stan [1 ]
机构
[1] NVIDIA, Santa Clara, CA 95051 USA
[2] Georgia Inst Technol, Atlanta, GA 30332 USA
来源
2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022) | 2022年
关键词
D O I
10.1109/ICRA46639.2022.9811720
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a single-stage, category-level 6-DoF pose estimation algorithm that simultaneously detects and tracks instances of objects within a known category. Our method takes as input the previous and current frame from a monocular RGB video, as well as predictions from the previous frame, to predict the bounding cuboid and 6-DoF pose (up to scale). Internally, a deep network predicts distributions over object keypoints (vertices of the bounding cuboid) in image coordinates, after which a novel probabilistic filtering process integrates across estimates before computing the final pose using PnP. Our framework allows the system to take previous uncertainties into consideration when predicting the current frame, resulting in predictions that are more accurate and stable than single frame methods. Extensive experiments show that our method outperforms existing approaches on the challenging Objectron benchmark of annotated object videos. We also demonstrate the usability of our work in an augmented reality setting.
引用
收藏
页数:7
相关论文
共 50 条
[11]   Zero-Shot Category-Level Object Pose Estimation [J].
Goodwin, Walter ;
Vaze, Sagar ;
Havoutis, Ioannis ;
Posner, Ingmar .
COMPUTER VISION, ECCV 2022, PT XXXIX, 2022, 13699 :516-532
[12]   Category-Level Metric Scale Object Shape and Pose Estimation [J].
Lee, Taeyeop ;
Lee, Byeong-Uk ;
Kim, Myungchul ;
Kweon, I. S. .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04) :8575-8582
[13]   Bi-directional attention based RGB-D fusion for category-level object pose and shape estimation [J].
Tang, Kaifeng ;
Xu, Chi ;
Chen, Ming .
MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (17) :53043-53063
[14]   Category-Level Object Detection, Pose Estimation and Reconstruction from Stereo Images [J].
Zhang, Chuanrui ;
Ling, Yonggen ;
Lu, Minglei ;
Qin, Minghan ;
Wang, Haoqian .
COMPUTER VISION - ECCV 2024, PT XXXIV, 2025, 15092 :332-349
[15]   Bi-directional attention based RGB-D fusion for category-level object pose and shape estimation [J].
Kaifeng Tang ;
Chi Xu ;
Ming Chen .
Multimedia Tools and Applications, 2024, 83 :53043-53063
[16]   Open-Vocabulary Category-Level Object Pose and Size Estimation [J].
Cai, Junhao ;
He, Yisheng ;
Yuan, Weihao ;
Zhu, Siyu ;
Dong, Zilong ;
Bo, Liefeng ;
Chen, Qifeng .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (09) :7661-7668
[17]   SE(3)-Equivariance Learning for Category-Level Object Pose Estimation [J].
Du, Hongzhi ;
Li, Yanyan ;
Di, Yan ;
Zhang, Teng ;
Sun, Yanbiao ;
Zhu, Jigui .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
[18]   GarmentTracking: Category-Level Garment Pose Tracking [J].
Xue, Han ;
Xu, Wenqiang ;
Zhang, Jieyi ;
Tang, Tutian ;
Li, Yutong ;
Du, Wenxin ;
Ye, Ruolin ;
Lu, Cewu .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, :21233-21242
[19]   TG-Pose: Delving Into Topology and Geometry for Category-Level Object Pose Estimation [J].
Zhan, Yue ;
Wang, Xin ;
Nie, Lang ;
Zhao, Yang ;
Yang, Tangwen ;
Ruan, Qiuqi .
IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 :9749-9762
[20]   A Keypoint-based Fast Object Tracking Algorithm [J].
Cao, Weihua ;
Ling, Qiang ;
Li, Feng ;
Zheng, Quan ;
Wang, Song .
PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, :4102-4106