Methacrylamide polymers with hydrolysis-sensitive cationic side groups as degradable gene carriers

被引:54
作者
Luten, Jordy [1 ]
Akeroyd, Niels [1 ]
Funhoff, Arjen [1 ]
Lok, Martin C. [1 ]
Talsma, Herre [1 ]
Hennink, Wim E. [1 ]
机构
[1] Univ Utrecht, Fac Pharmaceut Sci, UIPS, Dept Pharmaceut, NL-3508 TB Utrecht, Netherlands
关键词
TRANSFECTION EFFICIENCY; IN-VIVO; DELIVERY; DNA; COMPLEXES; SERUM; BARRIERS; VECTORS; LIBRARY; ESCAPE;
D O I
10.1021/bc060068p
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Water-soluble polymers with hydrolyzable cationic side groups (structure of the monomers are shown in Figure 1) were synthesized and evaluated as DNA delivery systems. The polymers, except for pHPMA-NHEM, were able to condense plasmid DNA into positively charged nanosized particles. The rate of hydrolysis at 37 C and pH 7.4 of the side groups differed widely; the fastest rate of hydrolysis was observed for HPMA-DEAE (half-life of 2 h), while HPMA-DMAPr had the lowest rate of hydrolysis (half-life of 70 h). In line with this, pHPMA-DEAE-based polyplexes showed the fastest destabilization of the polyplexes at 37 degrees C and pH 7.4. Polyplexes based on pHPMA-DEAE, pHPMA-DMAE, and pHPMA-MPPM showed release of intact DNA within 24, 48, and 48 h, respectively, after incubation at 37 degrees C and pH 7.4. PHPMA-DEAE and pHPMA-MPPM based polyplexes showed the highest transfection activity (almost twice as active as pEI). Importantly, the pHPMA-DEAE, pHPMA-MPPM, and pHPMA-BDMPAP polyplexes preserved their transfection activity in the presence of serum proteins. All polymers investigated showed a substantial lower in vitro cytotoxicity than pEI. In conclusion, pHPMA-based polyplexes are an attractive class of biodegradable vectors for nonviral gene delivery.
引用
收藏
页码:1077 / 1084
页数:8
相关论文
共 37 条
[1]   Parallel synthesis and biophysical characterization of a degradable polymer library for gene delivery [J].
Akinc, A ;
Lynn, DM ;
Anderson, DG ;
Langer, R .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (18) :5316-5323
[2]   Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery [J].
Anderson, DG ;
Lynn, DM ;
Langer, R .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (27) :3153-3158
[3]   Association and dissociation characteristics of polymer/DNA complexes used for gene delivery [J].
Arigita, C ;
Zuidam, NJ ;
Crommelin, DJA ;
Hennink, WE .
PHARMACEUTICAL RESEARCH, 1999, 16 (10) :1534-1541
[4]  
Audouy S, 2000, J GENE MED, V2, P465, DOI 10.1002/1521-2254(200011/12)2:6<465::AID-JGM141>3.0.CO
[5]  
2-Z
[6]   A VERSATILE VECTOR FOR GENE AND OLIGONUCLEOTIDE TRANSFER INTO CELLS IN CULTURE AND IN-VIVO - POLYETHYLENIMINE [J].
BOUSSIF, O ;
LEZOUALCH, F ;
ZANTA, MA ;
MERGNY, MD ;
SCHERMAN, D ;
DEMENEIX, B ;
BEHR, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (16) :7297-7301
[7]   Structure-function relationships of gene delivery vectors in a limited polycation library [J].
Chen, DJ ;
Majors, BS ;
Zelikin, A ;
Putnam, D .
JOURNAL OF CONTROLLED RELEASE, 2005, 103 (01) :273-283
[8]   Effect of size and serum proteins on transfection efficiency of poly((2-dimethylamino)ethyl methacrylate)-plasmid nanoparticles [J].
Cherng, JY ;
vandeWetering, P ;
Talsma, H ;
Crommelin, DJA ;
Hennink, WE .
PHARMACEUTICAL RESEARCH, 1996, 13 (07) :1038-1042
[9]   Pollycation gene delivery systems: escape from endosomes to cytosol [J].
Cho, YW ;
Kim, JD ;
Park, K .
JOURNAL OF PHARMACY AND PHARMACOLOGY, 2003, 55 (06) :721-734
[10]   Lentiviruses in gene therapy clinical research [J].
Connolly, JB .
GENE THERAPY, 2002, 9 (24) :1730-1734