A Lagrangian Scheme for the Solution of Nonlinear Diffusion Equations Using Moving Simplex Meshes

被引:23
作者
Carrillo, Jose A. [1 ]
During, Bertram [2 ]
Matthes, Daniel [3 ]
McCormick, David S. [2 ]
机构
[1] Imperial Coll London, Dept Math, London SW7 2AZ, England
[2] Univ Sussex, Dept Math, Pevensey 2, Brighton BN1 9QH, E Sussex, England
[3] Tech Univ Munich, Zentrum Math, Boltzmannstr 3, D-85747 Garching, Germany
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
Lagrangian method; Optimal transport; Variational schemes; Nonlinear diffusions; POROUS-MEDIUM EQUATION; GRADIENT FLOW; EVOLVING DIFFEOMORPHISMS; CONTINUITY EQUATIONS; NUMERICAL-SIMULATION; PARTICLE METHOD; CONVERGENCE; APPROXIMATION; CONVEXITY;
D O I
10.1007/s10915-017-0594-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Lagrangian numerical scheme for solving nonlinear degenerate Fokker-Planck equations in space dimensions d >= 2 is presented. It applies to a large class of nonlinear diffusion equations, whose dynamics are driven by internal energies and given external potentials, e.g. the porous medium equation and the fast diffusion equation. The key ingredient in our approach is the gradient flow structure of the dynamics. For discretization of the Lagrangian map, we use a finite subspace of linear maps in space and a variational form of the implicit Euler method in time. Thanks to that time discretisation, the fully discrete solution inherits energy estimates from the original gradient flow, and these lead to weak compactness of the trajectories in the continuous limit. Consistency is analyzed in the planar situation, d = 2. A variety of numerical experiments for the porous medium equation indicates that the scheme is well-adapted to track the growth of the solution's support.
引用
收藏
页码:1463 / 1499
页数:37
相关论文
共 39 条
[1]  
Ambrosio L., 2008, Gradient flows: in metric spaces and in the space of probability measures, V2, P334
[2]   Stability of flows associated to gradient vector fields and convergence of iterated transport maps [J].
Ambrosio, Luigi ;
Lisini, Stefano ;
Savare, Giuseppe .
MANUSCRIPTA MATHEMATICA, 2006, 121 (01) :1-50
[3]  
Carrillo JA, 2010, CONTEMP MATH, V526, P37
[4]   Discretization of functionals involving the Monge-AmpSre operator [J].
Benamou, Jean-David ;
Carlier, Guillaume ;
Merigot, Quentin ;
Oudet, Edouard .
NUMERISCHE MATHEMATIK, 2016, 134 (03) :611-636
[5]   A FINITE VOLUME SCHEME FOR NONLINEAR DEGENERATE PARABOLIC EQUATIONS [J].
Bessemoulin-Chatard, Marianne ;
Filbet, Francis .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (05) :B559-B583
[6]   Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model [J].
Blanchet, Adrien ;
Calvez, Vincent ;
Carrillo, Jose A. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (02) :691-721
[7]   Self-similar numerical solutions of the porous-medium equation using moving mesh methods [J].
Budd, CJ ;
Collins, GJ ;
Huang, WZ ;
Russell, RD .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 357 (1754) :1047-1077
[8]   PARTICLE APPROXIMATION OF THE ONE DIMENSIONAL KELLER-SEGEL EQUATION, STABILITY AND RIGIDITY OF THE BLOW-UP [J].
Calvez, Vincent ;
Gallouet, Thomas O. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (03) :1175-1208
[9]   Numerical Analysis of a Robust Free Energy Diminishing Finite Volume Scheme for Parabolic Equations with Gradient Structure [J].
Cances, Clement ;
Guichard, Cindy .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2017, 17 (06) :1525-1584
[10]   CONVERGENCE OF A PARTICLE METHOD FOR DIFFUSIVE GRADIENT FLOWS IN ONE DIMENSION [J].
Carrillo, J. A. ;
Patacchini, F. S. ;
Sternberg, P. ;
Wolansky, G. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (06) :3708-3741