Thermal Conductivity of Al2O3 and CeO2 Nanoparticles and Their Hybrid Based Water Nanofluids: An Experimental Study

被引:35
|
作者
Kamel, Mohammed Saad [1 ,2 ]
Al-Oran, Otabeh [1 ,3 ]
Lezsovits, Ferenc [1 ]
机构
[1] Budapest Univ Technol & Econ, Fac Mech Engn, Dept Energy Engn, Muegyet Rkp 3, H-1111 Budapest, Hungary
[2] Southern Tech Univ, Al Nasiriya Tech Inst, Dept Mech Tech, Baghdad St, Thi Qar 64001, Al Nasiriya, Iraq
[3] Univ Jordan, Sch Engn, Dept Mech Engn, Queen Rania Str, Amman 11942, Jordan
关键词
thermal conductivity; Al2O3; nanoparticles; CeO2; hybrid nanofluid; experimental study; BOILING HEAT-TRANSFER; THERMOPHYSICAL PROPERTIES; VISCOSITY; GLYCOL; PERFORMANCE; PREDICTION; EFFICIENCY; STABILITY; COPPER;
D O I
10.3311/PPch.15382
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In many heat exchange systems, there is a demand to improve the thermal conductivity of the working fluids to make those fluids more efficient, and this can be done by dispersing solid nanomaterials into conventional liquids. In the present work, the thermal conductivity of alumina, ceria, and their hybrid with ratio (50:50) by volume-based deionized water nanofluids was experimentally measured. The nanofluids were prepared by two-step method with a range of dilute volume concentration (0.01-0.5 % Vol.), and measured at various temperatures (35, 40, 45, and 50 degrees C). The experimental data for basefluid and nanofluids were verified with theoretical and experimental models, and the results have shown good agreement within the accuracy of the thermal conductivity tester. The results demonstrated that the higher thermal conductivity enhancement percentages for Al2O3, CeO2, and their hybrid nanofluids were (5.3 %, 3.3 %, and 8.8 %) at volume concentration (0.5 % Vol.) and temperature (50 degrees C) compared to deionized water, respectively. Moreover, a correlation was proposed for the thermal conductivity enhancement ratio of the hybrid nanofluid and showed good accuracy with measured experimental data.
引用
收藏
页码:50 / 60
页数:11
相关论文
共 50 条
  • [31] Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: An experimental study
    Syam Sundar, L.
    Venkata Ramana, E.
    Singh, Manoj K.
    Sousa, Antonio C. M.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2014, 56 : 86 - 95
  • [32] Thermal conductivity of Al2O3 + TiO2/water nanofluid: Model development and experimental validation
    Charab, Alireza Azadi
    Movahedirad, Salman
    Norouzbeigi, Reza
    APPLIED THERMAL ENGINEERING, 2017, 119 : 42 - 51
  • [33] Influence of Al2O3 nanoparticles on the stability and viscosity of nanofluids
    Izadkhah, Mir-Shahabeddin
    Heris, Saeed Zeinali
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 138 (01) : 623 - 631
  • [34] Study on Enhanced Heat Transfer and Stability Characteristics of Al2O3-SiO2/Water Hybrid Nanofluids
    Huang, Yuxuan
    Li, Hongchao
    Hu, Jincheng
    Xu, Chaoyu
    Wang, Xiaochuan
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2023, 44 (10)
  • [35] Experimental measurement of thermal conductivity and viscosity of Al 2 O 3-GO (80:20) hybrid and mono nanofluids: A new correlation
    Selvarajoo, Khesarubini
    Wanatasanappan, V. Vicki
    Luon, Ng Yee
    DIAMOND AND RELATED MATERIALS, 2024, 144
  • [36] Experimental measurement of viscosity and electrical conductivity of water-based γ-Al2O3/MWCNT hybrid nanofluids with various particle mass ratios
    S. O. Giwa
    Mohsen Sharifpur
    Josua P. Meyer
    Somchai Wongwises
    Omid Mahian
    Journal of Thermal Analysis and Calorimetry, 2021, 143 : 1037 - 1050
  • [37] Effects of surfactant on the stability and thermal conductivity of Al2O3/de-ionized water nanofluids
    Xia, Guodong
    Jiang, Huanming
    Liu, Ran
    Zhai, Yuling
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2014, 84 : 118 - 124
  • [38] Investigations on electrical conductivity of stabilized water based Al2O3 nanofluids
    Minea, Alina Adriana
    Luciu, Razvan Silviu
    MICROFLUIDICS AND NANOFLUIDICS, 2012, 13 (06) : 977 - 985
  • [39] Experimental study on the thermal properties of Al2O3-CuO/water hybrid nanofluids: Development of an artificial intelligence model
    Marulasiddeshi, Hallera Basavarajappa
    Kanti, Praveen Kumar
    Jamei, Mehdi
    Prakash, Sajjal Basanna
    Sridhara, Somalapura Nagappa
    Said, Zafar
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (15) : 21066 - 21083
  • [40] Experimental study on the thermal conductivity enhancement of water based nanofluids using different types of carbon nanotubes
    Xing, Meibo
    Yu, Jianlin
    Wang, Ruixiang
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2015, 88 : 609 - 616