On a fourth-order nonlinear Helmholtz equation

被引:7
作者
Bonheure, Denis [1 ]
Casteras, Jean-Baptiste [1 ]
Mandel, Rainer [2 ]
机构
[1] Univ Libre Bruxelles, Dept Math, CP 214,Blvd Triomphe, B-1050 Brussels, Belgium
[2] Karlsruhe Inst Technol, Inst Anal, Englerstr 2, D-76131 Karlsruhe, Germany
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2019年 / 99卷 / 03期
关键词
GLOBAL WELL-POSEDNESS; DUAL VARIATIONAL-METHODS; SCHRODINGER-EQUATION; STANDING WAVES; SCATTERING; REGULARITY; STABILITY;
D O I
10.1112/jlms.12196
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the mixed dispersion fourth-order nonlinear Helmholtz equation Delta 2u-beta Delta u+alpha u=Gamma|u|p-2uinRN,for positive, bounded and ZN-periodic functions Gamma in the following three cases:(a)alpha<0,beta is an element of Ror(b)alpha>0,beta<-2 alpha or(c)alpha=0,beta<0.Using the dual method of Evequoz and Weth, we find solutions to this equation and establish some of their qualitative properties.
引用
收藏
页码:831 / 852
页数:22
相关论文
共 50 条
[31]   Fourth-Order Damped Wave Equation with Exponential Growth Nonlinearity [J].
Saanouni, Tarek .
ANNALES HENRI POINCARE, 2017, 18 (01) :345-374
[32]   ON THE DECAY PROPERTY OF THE CUBIC FOURTH-ORDER SCHR?DINGER EQUATION [J].
Yu, Xueying ;
Yue, Haitian ;
Zhao, Zehua .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (06) :2619-2630
[33]   A remark on asymptotics of solutions to Schrodinger equation with fourth-order dispersion [J].
Segata, Jun-Ichi .
ASYMPTOTIC ANALYSIS, 2011, 75 (1-2) :25-36
[34]   On a double degenerate fourth-order parabolic equation [J].
Liang, Bo ;
Su, Caiyue ;
Wang, Ying .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (02)
[35]   The fourth-order nonlinear Schrodinger limit for quantum Zakharov system [J].
Fang, Yung-Fu ;
Lin, Chi-Kun ;
Segata, Jun-Ichi .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (06)
[37]   On Blow-Up Solutions for the Fourth-Order Nonlinear Schrodinger Equation with Mixed Dispersions [J].
Niu, Huiling ;
Youssouf, Abdoulaye Ali ;
Feng, Binhua .
AXIOMS, 2024, 13 (03)
[38]   H∞ Fuzzy Control for Nonlinear Fourth-Order Parabolic Equation Subject to Input Delay [J].
Kang, Wen ;
Ding, Da-Wei ;
Guo, Bao-Zhu ;
Li, Qing .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (04) :2531-2539
[39]   Limiting Profile of the Blow-up Solutions for the Fourth-order Nonlinear Schrodinger Equation [J].
Zhu, Shihui ;
Zhang, Jian ;
Yang, Han .
DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2010, 7 (02) :187-205
[40]   ON THE WELL-POSEDNESS AND STABILITY FOR THE FOURTH-ORDER SCHRODINGER EQUATION WITH NONLINEAR DERIVATIVE TERM [J].
Li, Kelin ;
Di, Huafei .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (12) :4293-4320