On a fourth-order nonlinear Helmholtz equation

被引:7
作者
Bonheure, Denis [1 ]
Casteras, Jean-Baptiste [1 ]
Mandel, Rainer [2 ]
机构
[1] Univ Libre Bruxelles, Dept Math, CP 214,Blvd Triomphe, B-1050 Brussels, Belgium
[2] Karlsruhe Inst Technol, Inst Anal, Englerstr 2, D-76131 Karlsruhe, Germany
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2019年 / 99卷 / 03期
关键词
GLOBAL WELL-POSEDNESS; DUAL VARIATIONAL-METHODS; SCHRODINGER-EQUATION; STANDING WAVES; SCATTERING; REGULARITY; STABILITY;
D O I
10.1112/jlms.12196
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the mixed dispersion fourth-order nonlinear Helmholtz equation Delta 2u-beta Delta u+alpha u=Gamma|u|p-2uinRN,for positive, bounded and ZN-periodic functions Gamma in the following three cases:(a)alpha<0,beta is an element of Ror(b)alpha>0,beta<-2 alpha or(c)alpha=0,beta<0.Using the dual method of Evequoz and Weth, we find solutions to this equation and establish some of their qualitative properties.
引用
收藏
页码:831 / 852
页数:22
相关论文
共 50 条
[21]   Asymptotics for the fourth-order nonlinear Schrodinger equation in 2D [J].
Naumkin, Pavel, I .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (01)
[22]   Conservative finite difference scheme for the nonlinear fourth-order wave equation [J].
Achouri, Talha .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 359 :121-131
[23]   The Cauchy problem for the fourth-order Schrodinger equation in Hs [J].
Liu, Xuan ;
Zhang, Ting .
JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (07)
[24]   DEFOCUSING FOURTH-ORDER COUPLED NONLINEAR SCHRODINGER EQUATIONS [J].
Ghanmi, Radhia ;
Saanouni, Tarek .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
[25]   On the focusing mass-critical nonlinear fourth-order Schrodinger equation below the energy space [J].
Van Duong Dinh .
DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2017, 14 (03) :295-320
[26]   Fourth-order nonlinear Schrodinger equations in an exterior domain [J].
D'Abbicco, Marcello ;
Jleli, Mohamed ;
Samet, Bessem .
APPLICABLE ANALYSIS, 2025, 104 (11) :2124-2159
[27]   Well-posedness of the Cauchy problem for the fourth-order nonlinear Schrodinger equation [J].
Chen, Mingjuan ;
Liu, Nan ;
Wang, Yaqing .
APPLIED MATHEMATICS LETTERS, 2025, 160
[28]   Blow-up of rough solutions to the fourth-order nonlinear Schrodinger equation [J].
Zhu, Shihui ;
Yang, Han ;
Zhang, Jian .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) :6186-6201
[29]   Bifurcations and traveling wave solutions for a fourth-order integrable nonlinear Schrodinger equation [J].
Liu, Minghuan ;
Zheng, Yuanguang .
OPTIK, 2022, 255
[30]   A note on the inhomogeneous fourth-order Schrodinger equation [J].
Saanouni, T. ;
Ghanmi, R. .
JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2022, 13 (04)