The U (n) free rigid body: Integrability and stability analysis of the equilibria

被引:5
作者
Ratiu, Tudor S. [1 ]
Tarama, Daisuke [2 ]
机构
[1] Ecole Polytech Fed Lausanne, Sect Math, CH-1015 Lausanne, Switzerland
[2] Kyoto Univ, Dept Math, Kyoto 6068502, Japan
基金
瑞士国家科学基金会;
关键词
Free rigid body; Bi-Hamiltonian structure; Integrable system; Equilibrium; Lyapunov stability; HAMILTONIAN-SYSTEMS; SINGULARITIES; INTEGRALS; MANIFOLDS;
D O I
10.1016/j.jde.2015.08.021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A natural extension of the free rigid body dynamics to the unitary group U (n) is considered. The dynamics is described by the Euler equation on the Lie algebra u(n), which has a bi-Hamiltonian structure, and it can be reduced onto the adjoint orbits, as in the case of the SO(n). The complete integrability and the stability of the isolated equilibria on the generic orbits are considered by using the method of Bolsinov and Oshemkov. In particular, it is shown that all the isolated equilibria on generic orbits are Lyapunov stable. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:7284 / 7331
页数:48
相关论文
共 37 条
  • [1] Abraham R., 1978, Foundations of Mechanics
  • [2] Amol'd V.I., 1992, ORDINARY DIFFERENTIA
  • [3] [Anonymous], 1974, Reports on Mathematical Physics, V5, P121, DOI 10.1016/0034-4877(74)90021-4
  • [4] Audin M., 1996, SPINNING TOPS
  • [5] Birtea P, 2012, J NONLINEAR SCI, V22, P187, DOI 10.1007/s00332-011-9113-2
  • [6] Bi-Hamiltonian structures and singularities of integrable systems
    Bolsinov, A. V.
    Oshemkov, A. A.
    [J]. REGULAR & CHAOTIC DYNAMICS, 2009, 14 (4-5) : 431 - 454
  • [7] Bolsinov A.V., 1989, SOV MATH DOKL, V38, P161
  • [8] Singularities of Bi-Hamiltonian Systems
    Bolsinov, Alexey
    Izosimov, Anton
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 331 (02) : 507 - 543
  • [9] COMMUTATIVE FAMILIES OF FUNCTIONS RELATED TO CONSISTENT POISSON BRACKETS
    BOLSINOV, AV
    [J]. ACTA APPLICANDAE MATHEMATICAE, 1991, 24 (03) : 253 - 274
  • [10] Bruhat F., 1959, COMMENT MATH HELV, V33, P132