Deep Learning and Handcrafted Method Fusion: Higher Diagnostic Accuracy for Melanoma Dermoscopy Images

被引:129
作者
Hagerty, Jason R. [1 ]
Stanley, R. Joe [2 ]
Almubarak, Haidar A. [2 ]
Lama, Norsang [2 ]
Kasmi, Reda [3 ]
Guo, Peng [2 ]
Drugge, Rhett J. [4 ]
Rabinovitz, Harold S. [5 ]
Oliviero, Margaret [5 ]
Stoecker, William V. [1 ]
机构
[1] S&A Technol, Rolla, MO 65401 USA
[2] Missouri Univ Sci & Technol, Rolla, MO 65209 USA
[3] Univ Bejaia, Bejaia 06000, Algeria
[4] Sheard & Drugge, Stamford, CT 06902 USA
[5] Plantation Skin & Canc Associates, Plantation, FL 33324 USA
基金
美国国家卫生研究院;
关键词
Melanoma; dermoscopy; deep learning; classifier; transfer learning; LESION SEGMENTATION; SKIN-LESIONS; CLASSIFICATION; ALGORITHMS; CHALLENGE; TEXTURE; AREAS;
D O I
10.1109/JBHI.2019.2891049
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents an approach that combines conventional image processing with deep learning by fusing the features from the individual techniques. We hypothesize that the two techniques, with different error profiles, are synergistic. The conventional image processing arm uses three handcrafted biologically inspired image processing modules and one clinical information module. The image processing modules detect lesion features comparable to clinical dermoscopy information-atypical pigment network, color distribution, and blood vessels. The clinical module includes information submitted to the pathologist-patient age, gender, lesion location, size, and patient history. The deep learning arm utilizes knowledge transfer via a ResNet-50 network that is repurposed to predict the probability of melanoma classification. The classification scores of each individual module from both processing arms are then ensembled utilizing logistic regression to predict an overall melanoma probability. Using cross-validated results of melanoma classification measured by area under the receiver operator characteristic curve (AUC), classification accuracy of 0.94 was obtained for the fusion technique. In comparison, the ResNet-50 deep learning based classifier alone yields an AUC of 0.87 and conventional image processing based classifier yields an AUC of 0.90. Further study of fusion of conventional image processing techniques and deep learning is warranted.
引用
收藏
页码:1385 / 1391
页数:7
相关论文
共 43 条
  • [11] Celebi M.E., 2015, Dermosc Image Analy, V10, P97
  • [12] Automatic detection of basal cell carcinoma using telangiectasia analysis in dermoscopy skin lesion images
    Cheng, Beibei
    Erdos, David
    Stanley, Ronald J.
    Stoecker, William V.
    Calcara, David A.
    Gomez, David D.
    [J]. SKIN RESEARCH AND TECHNOLOGY, 2011, 17 (03) : 278 - 287
  • [13] Codella Noel, 2015, Machine Learning in Medical Imaging. 6th International Workshop, MLMI 2015, held in conjunction with MICCAI 2015. Proceedings: LNCS 9352, P118, DOI 10.1007/978-3-319-24888-2_15
  • [14] Deep learning ensembles for melanoma recognition in dermoscopy images
    Codella, N. C. F.
    Nguyen, Q. -B.
    Pankanti, S.
    Gutman, D. A.
    Helba, B.
    Halpern, A. C.
    Smith, J. R.
    [J]. IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2017, 61 (4-5)
  • [15] Codella N, 2014, LECT NOTES COMPUT SC, V8674, P487, DOI 10.1007/978-3-319-10470-6_61
  • [16] Concentric decile segmentation of white and hypopigmented areas in dermoscopy images of skin lesions allows discrimination of malignant melanoma
    Dalal, Ankur
    Moss, Randy H.
    Stanley, R. Joe
    Stoecker, William V.
    Gupta, Kapil
    Calcara, David A.
    Xu, Jin
    Shrestha, Bijaya
    Drugge, Rhett
    Malters, Joseph M.
    Perry, Lindall A.
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2011, 35 (02) : 148 - 154
  • [17] Dermatologist-level classification of skin cancer with deep neural networks
    Esteva, Andre
    Kuprel, Brett
    Novoa, Roberto A.
    Ko, Justin
    Swetter, Susan M.
    Blau, Helen M.
    Thrun, Sebastian
    [J]. NATURE, 2017, 542 (7639) : 115 - +
  • [18] Computer-aided classification of melanocytic lesions using dermoscopic images
    Ferris, Laura K.
    Harkes, Jan A.
    Gilbert, Benjamin
    Winger, Daniel G.
    Golubets, Kseniya
    Akilov, Oleg
    Satyanarayanan, Mahadev
    [J]. JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2015, 73 (05) : 769 - 776
  • [19] Ghantasala Kaushik V. S. N., 2013, International Conference on Computer Vision Theory and Applications (VISAPP 2013). Proceedings, P492
  • [20] Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists
    Haenssle, H. A.
    Fink, C.
    Schneiderbauer, R.
    Toberer, F.
    Buhl, T.
    Blum, A.
    Kalloo, A.
    Hassens, A. Ben Hadj
    Thomas, L.
    Enk, A.
    Uhlmann, L.
    [J]. ANNALS OF ONCOLOGY, 2018, 29 (08) : 1836 - 1842