Well posedness and exponential stability in a wave equation with a strong damping and a strong delay

被引:40
作者
Messaoudi, Salim A. [1 ]
Fareh, Abdelfeteh [2 ]
Doudi, Nadjet [2 ]
机构
[1] KFUPM, Dept Math & Stat, Dhahran 31261, Saudi Arabia
[2] Univ Echahid Hamma Lakhdar, Fac Sci Exactes, Dept Math, Lab Theorie Operateurs & EDP Fondements & Applica, POB 789, El Oued, Algeria
关键词
TIMOSHENKO SYSTEM; ENERGY DECAY; BOUNDARY; INSTABILITY; TERM;
D O I
10.1063/1.4966551
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider a wave equation with a strong damping and a strong constant (respectively, distributed) delay. We prove the well-posedness and establish an exponential decay result under a suitable assumption on the weight of the damping and the weight of the delay. Published by AIP Publishing.
引用
收藏
页数:13
相关论文
共 29 条
[1]  
[Anonymous], 2011, SOBOLEV SPACES PARTI
[2]  
Apalara T. A, 2014, ELECTRON J DIFFER EQ, P1
[3]   An Exponential Stability Result of a Timoshenko System with Thermoelasticity with Second Sound and in the Presence of Delay [J].
Apalara, Tijani A. ;
Messaoudi, Salim A. .
APPLIED MATHEMATICS AND OPTIMIZATION, 2015, 71 (03) :449-472
[4]   Feedback stabilization of a class of evolution equations with delay [J].
Benhassi, E. M. Ait ;
Ammari, K. ;
Boulite, S. ;
Maniar, L. .
JOURNAL OF EVOLUTION EQUATIONS, 2009, 9 (01) :103-121
[5]  
CHEN G, 1979, J MATH PURE APPL, V58, P249
[6]   Neurocomputing with time delay analysis for solving convex quadratic programming problems [J].
Chen, YH ;
Fang, SC .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (01) :230-240
[7]   NOT ALL FEEDBACK STABILIZED HYPERBOLIC SYSTEMS ARE ROBUST WITH RESPECT TO SMALL TIME DELAYS IN THEIR FEEDBACKS [J].
DATKO, R .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1988, 26 (03) :697-713
[8]   AN EXAMPLE ON THE EFFECT OF TIME DELAYS IN BOUNDARY FEEDBACK STABILIZATION OF WAVE-EQUATIONS [J].
DATKO, R ;
LAGNESE, J ;
POLIS, MP .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1986, 24 (01) :152-156
[10]   Delay-induced multistable synchronization of biological oscillators [J].
Ernst, U ;
Pawelzik, K ;
Geisel, T .
PHYSICAL REVIEW E, 1998, 57 (02) :2150-2162