Substrate dielectric effects on graphene field effect transistors

被引:27
作者
Hu, Zhaoying [1 ]
Sinha, Dhiraj Prasad [1 ]
Lee, Ji Ung [1 ]
Liehr, Michael [1 ]
机构
[1] SUNY Albany, Coll Nanoscale Sci & Engn, Albany, NY 12203 USA
关键词
CHEMICAL-VAPOR-DEPOSITION; P-N-JUNCTIONS; ELECTRONIC TRANSPORT; PERFORMANCE; FILMS; SCATTERING; MOBILITY; SIO2;
D O I
10.1063/1.4879236
中图分类号
O59 [应用物理学];
学科分类号
摘要
Graphene is emerging as a promising material for future electronics and optoelectronics applications due to its unique electronic structure. Understanding the graphene-dielectric interaction is of vital importance for the development of graphene field effect transistors (FETs) and other novel graphene devices. Here, we extend the exploration of substrate dielectrics from conventionally used thermally grown SiO2 and hexagonal boron nitride films to technologically relevant deposited dielectrics used in semiconductor industry. A systematic analysis of morphology and optical and electrical properties was performed to study the effects of different substrates (SiO2, HfO2, Al2O3, tetraethyl orthosilicate (TEOS)-oxide, and Si3N4) on the carrier transport of chemical vapor deposition-derived graphene FET devices. As baseline, we use graphene FETs fabricated on thermal SiO2 with a relatively high carrier mobility of 10 000 cm(2)/(V s). Among the deposited dielectrics studied, silicon nitride showed the highest mobility, comparable to the properties of graphene fabricated on thermal SiO2. We conclude that this result comes from lower long range scattering and short range scattering rates in the nitride compared those in the other deposited films. The carrier fluctuation caused by substrates, however, seems to be the main contributing factor for mobility degradation, as a universal mobility-disorder density product is observed for all the dielectrics examined. The extrinsic doping trend is further confirmed by Raman spectra. We also provide, for the first time, correlation between the intensity ratio of G peak and 2D peak in the Raman spectra to the carrier mobility of graphene for different substrates. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:6
相关论文
共 44 条
[1]   A self-consistent theory for graphene transport [J].
Adam, Shaffique ;
Hwang, E. H. ;
Galitski, V. M. ;
Das Sarma, S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) :18392-18397
[2]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[3]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[4]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[5]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[6]   Reducing Extrinsic Performance-Limiting Factors in Graphene Grown by Chemical Vapor Deposition [J].
Chan, Jack ;
Venugopal, Archana ;
Pirkle, Adam ;
McDonnell, Stephen ;
Hinojos, David ;
Magnuson, Carl W. ;
Ruoff, Rodney S. ;
Colombo, Luigi ;
Wallace, Robert M. ;
Vogel, Eric M. .
ACS NANO, 2012, 6 (04) :3224-3229
[7]   The focusing of electron flow and a Veselago lens in graphene p-n junctions [J].
Cheianov, Vadim V. ;
Fal'ko, Vladimir ;
Altshuler, B. L. .
SCIENCE, 2007, 315 (5816) :1252-1255
[8]   Charged-impurity scattering in graphene [J].
Chen, J. -H. ;
Jang, C. ;
Adam, S. ;
Fuhrer, M. S. ;
Williams, E. D. ;
Ishigami, M. .
NATURE PHYSICS, 2008, 4 (05) :377-381
[9]   Defect Scattering in Graphene [J].
Chen, Jian-Hao ;
Cullen, W. G. ;
Jang, C. ;
Fuhrer, M. S. ;
Williams, E. D. .
PHYSICAL REVIEW LETTERS, 2009, 102 (23)
[10]   Controllable p-n Junction Formation in Mono layer Graphene Using Electrostatic Substrate Engineering [J].
Chiu, Hsin-Ying ;
Perebeinos, Vasili ;
Lin, Yu-Ming ;
Avouris, Phaedon .
NANO LETTERS, 2010, 10 (11) :4634-4639