On the robustness of linear and non-linear fractional-order systems with non-linear uncertain parameters

被引:6
作者
N'Doye, Ibrahima [1 ]
Darouach, Mohamed [2 ]
Voos, Holger [3 ]
Zasadzinski, Michel [2 ]
机构
[1] King Abdullah Univ Sci & Technol, Comp Elect & Math Sci & Engn Div CEMSE, Thuwal 239556900, Saudi Arabia
[2] Univ Lorraine, CNRS, Res Ctr Automat Control Nancy CRAN UMR, IUT Longwy, 186 Rue Lorraine, F-54400 Cosnes Et Romain, France
[3] Univ Luxembourg, FSTC, 6 Rue Richard Coudenhove Kalergi, L-1359 Luxembourg, Luxembourg
关键词
linear and non-linear fractional-order systems; linear matrix inequality (LMI); generalization of Gronwall-Bellman lemma; robust stabilization; parameter uncertainties; STABILITY TEST; STABILIZATION;
D O I
10.1093/imamci/dnv022
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
non-linear uncertain parameters. The uncertainty in the model appears in the form of the combination of additive perturbation' and multiplicative perturbation'. Sufficient conditions for the robust asymptotical stabilization of linear fractional-order systems are presented in terms of linear matrix inequalities (LMIs) with the fractional-order 0<alpha<1. Sufficient conditions for the robust asymptotical stabilization of non-linear fractional-order systems are then derived using a generalization of the Gronwall-Bellman approach. Finally, a numerical example is given to illustrate the effectiveness of the proposed results.
引用
收藏
页码:997 / 1014
页数:18
相关论文
共 44 条
[1]   Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller [J].
Aghababa, Mohammad Pourmahmood .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (06) :2670-2681
[2]   Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality [J].
Ahn, Hyo-Sung ;
Chen, YangQuan ;
Podlubny, Igor .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (01) :27-34
[3]  
[Anonymous], P IEEE C DEC CONTR S
[4]  
[Anonymous], 2004, UNSOLVED PROBLEMS MA
[5]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[6]  
Boyd S., 1994, SIAM STUDIES APPL MA
[7]   Robust Linear Controller Design: Time Domain Approach [J].
Chen, Bor-Sen ;
Wong, Ching-Chang .
IEEE Transactions on Automatic Control, 1987, AC-32 (02) :161-164
[8]   Robust stability check of fractional order linear time invariant systems with interval uncertainties [J].
Chen, YangQuan ;
Ahn, Hyo-Sung ;
Podlubny, Igor .
SIGNAL PROCESSING, 2006, 86 (10) :2611-2618
[9]  
Das S., 2008, Functional Fractional Calculus for System Identification and Controls
[10]  
Desoer CA., 1975, FEEDBACK SYSTEMS INP