Limit distributions of order statistics with random indices in a stationary Gaussian sequence

被引:5
作者
Barakat, H. M. [1 ]
Nigm, E. M. [1 ]
Zaid, E. O. Abo [1 ]
机构
[1] Zagazig Univ, Dept Math, Fac Sci, Zagazig, Egypt
关键词
Central order statistics; Extremes; Gaussian sequences; Intermediate order statistics; Random sample size; ASYMPTOTIC PROPERTIES; RANDOM EXTREMES; NORMALIZATION; MAXIMA;
D O I
10.1080/03610926.2016.1148732
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we study the limit distributions of the extreme, intermediate, and central order statistics (os) of a stationary Gaussian sequence under equi-correlated setup. When the random sample size is assumed to converge weakly and to be independent of the basic variables, the sufficient (and in some cases the necessary) conditions for the convergence are derived. Finally, we show that the obtained result for the maximum os, with random sample size, is also applicable in the case of the non constant correlation case.
引用
收藏
页码:7099 / 7113
页数:15
相关论文
共 24 条
[1]  
[Anonymous], 1987, ASYMPTOTIC THEORY EX
[2]  
[Anonymous], 1970, On Regular Variation and its Applications to the Weak Convergence of Sample Extremes
[3]  
Azlarov T. A., 1991, USPEKHI MAT ZH, V1, P13
[4]  
Barakat H. M., 1990, COMMENT MATH UNIV CA, V31, P323
[5]  
Barakat H. M., 2004, METRON, VLXII, P161
[6]   Asymptotic properties of random extremes under general normalization from nonidentical distributions [J].
Barakat, HM ;
Nigm, EM ;
El-Adll, ME .
METRIKA, 2004, 59 (03) :275-287
[7]  
Barakat HM, 2002, KUWAIT J SCI ENG, V29, P27
[8]   Asymptotic properties of bivariate random extremes [J].
Barakat, HM .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1997, 61 (02) :203-217
[9]  
Barndorff-Nielsen O., 1964, ACTA MATH ACAD SCI H, V15, P399
[10]  
Chang C. Y. D., 1999, EXTREMES, V2, P95