Fatigue crack growth analysis of cracked specimens by the coupled finite element-element free Galerkin method

被引:29
作者
Jameel, Azher [1 ]
Harmain, G. A. [2 ]
机构
[1] Shri Mata Vaishno Devi Univ, Dept Mech Engn, Katra 182320, Jammu & Kashmir, India
[2] Natl Inst Technol Srinagar, Dept Mech Engn, Hazratbal, Jammu & Kashmir, India
关键词
Coupled FE-EFGM; level sets; SIFs; fatigue life; cracks; NUMERICAL-SIMULATION; BOUNDARY-CONDITIONS; MESHLESS METHOD; FRACTURE; IMPLEMENTATION; APPROXIMATIONS; PROPAGATION;
D O I
10.1080/15376494.2018.1432800
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a novel approach based on the coupled finite element (FE) and element free Galerkin (EFG) method to model fatigue crack growth in 2-D specimens containing different types of material discontinuities like holes and bi-material interfaces. In this approach, EFGM is used to discretize the domain near the crack whereas the conventional FEM is employed in the rest of the domain. The shape functions of the transition elements have been obtained by using the ramp function. The level set method has been used to track different discontinuities present in the domain. Finally, several two dimensional numerical problems are presented to demonstrate the applicability and efficiency of the proposed technique in modelling fatigue crack growth in presence of material discontinuities. The effect of various material irregularities on fatigue life, critical crack length and crack growth paths has been investigated in the present study. The results show that the critical crack length and the fatigue life of the cracked component reduce due to the presence of a weak bi-material discontinuity in it. The weaker discontinuities increase the fatigue life of the cracked specimen, whereas the stronger discontinuities slightly increase the fatigue life of the cracked component. The presence of holes in a cracked specimen reduces the fatigue life and the critical crack length at final failure. It was also observed that the holes and the weaker discontinuities exert some sort of attractive effect on the crack during its propagation through the domain.
引用
收藏
页码:1343 / 1356
页数:14
相关论文
共 53 条
[1]  
Belytschko T, 1999, INT J NUMER METH ENG, V45, P601, DOI 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO
[2]  
2-S
[3]   CRACK-PROPAGATION BY ELEMENT-FREE GALERKIN METHODS [J].
BELYTSCHKO, T ;
LU, YY ;
GU, L .
ENGINEERING FRACTURE MECHANICS, 1995, 51 (02) :295-315
[4]   FRACTURE AND CRACK-GROWTH BY ELEMENT FREE GALERKIN METHODS [J].
BELYTSCHKO, T ;
GU, L ;
LU, YY .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 1994, 2 (3A) :519-534
[5]   ELEMENT-FREE GALERKIN METHODS [J].
BELYTSCHKO, T ;
LU, YY ;
GU, L .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (02) :229-256
[6]   Meshless methods: An overview and recent developments [J].
Belytschko, T ;
Krongauz, Y ;
Organ, D ;
Fleming, M ;
Krysl, P .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 139 (1-4) :3-47
[7]   Application of the element-free Galerkin meshless method to 3-D fracture mechanics problems [J].
Brighenti, R .
ENGINEERING FRACTURE MECHANICS, 2005, 72 (18) :2808-2820
[8]   A finite element analysis of stable crack growth in an aluminium alloy [J].
Cheung, S ;
Luxmoore, AR .
ENGINEERING FRACTURE MECHANICS, 2003, 70 (09) :1153-1169
[9]   Fatigue crack propagation of multiple coplanar cracks with the coupled extended finite element/fast marching method [J].
Chopp, DL ;
Sukumar, N .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2003, 41 (08) :845-869
[10]   Fatigue crack growth analysis by an enriched meshless method [J].
Duflot, M ;
Nguyen-Dang, H .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 168 (1-2) :155-164