Supervised machine learning for the early prediction of acute respiratory distress syndrome (ARDS)

被引:51
作者
Le, Sidney [1 ]
Pellegrini, Emily [1 ]
Green-Saxena, Abigail [1 ]
Summers, Charlotte [2 ]
Hoffman, Jana [1 ]
Calvert, Jacob [1 ]
Das, Ritankar [1 ]
机构
[1] Dascena Inc, POB 156572, San Francisco, CA 94115 USA
[2] Univ Cambridge, Sch Clin Med, Dept Med, Cambridge, England
关键词
Acute respiratory distress syndrome; Intensive care unit; Machine learning; Clinical decision support systems; Electronic health records; Medical informatics; ACUTE LUNG INJURY; INTENSIVE-CARE UNITS; EARLY IDENTIFICATION; CLINICAL PREDICTORS; MORTALITY; OUTCOMES; SCORE; RISK; EPIDEMIOLOGY; DEFINITIONS;
D O I
10.1016/j.jcrc.2020.07.019
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Purpose: Acute respiratory distress syndrome (ARDS) is a serious respiratory condition with high mortality and associated morbidity. The objective of this study is to develop and evaluate a novel application of gradient boosted tree models trained on patient health record data for the early prediction of ARDS. Materials and methods: 9919 patient encounters were retrospectively analyzed from the Medical Information Mart for Intensive Care III (MIMIC-III) data base. XGBoost gradient boosted tree models for early ARDS prediction were created using routinely collected clinical variables and numerical representations of radiology reports as inputs. XGBoost models were iteratively trained and validated using 10-fold cross validation. Results: On a hold-out test set, algorithm classifiers attained area under the receiver operating characteristic curve (AUROC) values of 0.905 when tested for the detection of ARDS at onset and 0.827, 0.810, and 0.790 for the prediction of ARDS at 12-, 24-, and 48-h windows prior to onset, respectively. Conclusion: Supervised machine learning predictions may help predict patients with ARDS up to 48 h prior to onset. (C) 2020 The Authors. Published by Elsevier Inc.
引用
收藏
页码:96 / 102
页数:7
相关论文
共 64 条
[1]   Analysis of longitudinal binary data with missing data due to dropouts [J].
Ali, MW ;
Talukder, E .
JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2005, 15 (06) :993-1007
[2]   Validation Study of an Automated Electronic Acute Lung Injury Screening Tool [J].
Azzam, Helen C. ;
Khalsa, Satjeet S. ;
Urbani, Richard ;
Shah, Chriac V. ;
Christie, Jason D. ;
Lanken, Paul N. ;
Fuchs, Barry D. .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2009, 16 (04) :503-508
[3]  
Barrett ML., 2014, Healthcare Cost and Utilization Project (HCUP) Statistical Briefs
[4]   Lung Injury Prediction Score Is Useful in Predicting Acute Respiratory Distress Syndrome and Mortality in Surgical Critical Care Patients [J].
Bauman, Zachary M. ;
Gassner, Marika Y. ;
Coughlin, Megan A. ;
Mahan, Meredith ;
Watras, Jill .
CRITICAL CARE RESEARCH AND PRACTICE, 2015, 2015
[5]   Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries [J].
Bellani, Giacomo ;
Laffey, John G. ;
Pham, Tai ;
Fan, Eddy ;
Brochard, Laurent ;
Esteban, Andres ;
Gattinoni, Luciano ;
van Haren, Frank ;
Larsson, Anders ;
McAuley, Daniel F. ;
Ranieri, Marco ;
Rubenfeld, Gordon ;
Thompson, B. Taylor ;
Wrigge, Hermann ;
Slutsky, Arthur S. ;
Pesenti, Antonio .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 315 (08) :788-800
[6]   THE AMERICAN-EUROPEAN CONSENSUS CONFERENCE ON ARDS - DEFINITIONS, MECHANISMS, RELEVANT OUTCOMES, AND CLINICAL-TRIAL COORDINATION [J].
BERNARD, GR ;
ARTIGAS, A ;
BRIGHAM, KL ;
CARLET, J ;
FALKE, K ;
HUDSON, L ;
LAMY, M ;
LEGALL, JR ;
MORRIS, A ;
SPRAGG, R ;
COCHIN, B ;
LANKEN, PN ;
LEEPER, KV ;
MARINI, J ;
MURRAY, JF ;
OPPENHEIMER, L ;
PESENTI, A ;
REID, L ;
RINALDO, J ;
VILLAR, J ;
VANASBECK, BS ;
DHAINAUT, JF ;
MANCEBO, J ;
MATTHAY, M ;
MEYRICK, B ;
PAYEN, D ;
PERRET, C ;
FOWLER, AA ;
SCHALLER, MD ;
HUDSON, LD ;
HYERS, T ;
KNAUS, W ;
MATTHAY, R ;
PINSKY, M ;
BONE, RC ;
BOSKEN, C ;
JOHANSON, WG ;
LEWANDOWSKI, K ;
REPINE, J ;
RODRIGUEZROISIN, R ;
ROUSSOS, C ;
ANTONELLI, MA ;
BELOUCIF, S ;
BIHARI, D ;
BURCHARDI, H ;
LEMAIRE, F ;
MONTRAVERS, P ;
PETTY, TL ;
ROBOTHAM, J ;
ZAPOL, W .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 1994, 149 (03) :818-824
[7]   A Pathophysiologic Approach to Biomarkers in Acute Respiratory Distress Syndrome [J].
Blondonnet, Raiko ;
Constantin, Jean-Michel ;
Sapin, Vincent ;
Jabaudon, Matthieu .
DISEASE MARKERS, 2016, 2016
[8]   Epidemiology and outcome of acute lung injury in European intensive care units - Results from the ALIVE study [J].
Brun-Buisson, C ;
Minelli, C ;
Bertolini, G ;
Brazzi, L ;
Pimentel, J ;
Lewandowski, K ;
Bion, J ;
Rornand, JA ;
Villar, J ;
Thorsteinsson, A ;
Damas, P ;
Armaganidis, A ;
Lemaire, FO .
INTENSIVE CARE MEDICINE, 2004, 30 (01) :51-61
[9]   Impact of Distinct Definitions of Acute Lung Injury on Its Incidence and Outcomes in Brazilian ICUs: Prospective Evaluation of 7,133 Patients [J].
Caser, Eliana B. ;
Zandonade, Eliana ;
Pereira, Ewerton ;
Casati Gama, Ana Maria ;
Barbas, Carmen S. V. .
CRITICAL CARE MEDICINE, 2014, 42 (03) :574-582
[10]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794