Stochastic attractors for non-ergodic Markov processes: Some examples

被引:0
|
作者
Pra, Paolo Dai [1 ]
Minelli, Ida [1 ]
机构
[1] Univ Padua, Dipartimento Matemat Pura & Applicata, I-35131 Padua, Italy
关键词
random dynamical systems; Markov processes;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss the notion of stochastic attractor for Markov processes. We exhibit some nontrivial examples of Markov processes possessing more than one stationary distributions, for which the stochastic attractor can be explicitly determined.
引用
收藏
页码:395 / 421
页数:27
相关论文
共 50 条
  • [1] Ergodic descriptors of non-ergodic stochastic processes
    Mangalam, Madhur
    Kelty-Stephen, Damian G.
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2022, 19 (189)
  • [2] Fluctuations of non-ergodic stochastic processes
    G. George
    L. Klochko
    A. N. Semenov
    J. Baschnagel
    J. P. Wittmer
    The European Physical Journal E, 2021, 44
  • [3] Fluctuations of non-ergodic stochastic processes
    George, G.
    Klochko, L.
    Semenov, A. N.
    Baschnagel, J.
    Wittmer, J. P.
    EUROPEAN PHYSICAL JOURNAL E, 2021, 44 (04):
  • [4] Some characterizations of non-ergodic estimating functions for stochastic processes
    Hwang, S. Y.
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2015, 44 (04) : 661 - 667
  • [5] Some characterizations of non-ergodic estimating functions for stochastic processes
    S. Y. Hwang
    Journal of the Korean Statistical Society, 2015, 44 : 661 - 667
  • [6] Ergodic and non-ergodic anomalous diffusion in coupled stochastic processes
    Bel, Golan
    Nemenman, Ilya
    NEW JOURNAL OF PHYSICS, 2009, 11
  • [7] Simple models for strictly non-ergodic stochastic processes of macroscopic systems
    G. George
    L. Klochko
    A. N. Semenov
    J. Baschnagel
    J. P. Wittmer
    The European Physical Journal E, 2021, 44
  • [8] Simple models for strictly non-ergodic stochastic processes of macroscopic systems
    George, G.
    Klochko, L.
    Semenov, A. N.
    Baschnagel, J.
    Wittmer, J. P.
    EUROPEAN PHYSICAL JOURNAL E, 2021, 44 (10):
  • [9] A Component-Based Solution Method for Non-ergodic Markov Regenerative Processes
    Amparore, Elvio Gilberto
    Donatelli, Susanna
    COMPUTER PERFORMANCE ENGINEERING, 2010, 6342 : 236 - 251
  • [10] On Non-Ergodic Gaussian Quadratic Stochastic Operators
    Hamzah, Nur Zatul Akmar
    Ganikhodjaev, Nasir
    PROCEEDING OF THE 25TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM25): MATHEMATICAL SCIENCES AS THE CORE OF INTELLECTUAL EXCELLENCE, 2018, 1974