REGULARITY OF THE SOLUTION TO 1-D FRACTIONAL ORDER DIFFUSION EQUATIONS

被引:108
作者
Ervin, V. J. [1 ]
Heuer, N. [2 ]
Roop, J. P. [3 ]
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
[2] Pontificia Univ Catolica Chile, Fac Matemat, Ave Vicuna Mackenna 4860, Santiago, Chile
[3] North Carolina A&T State Univ, Dept Math, Greensboro, NC 27411 USA
关键词
FINITE-DIFFERENCE METHOD; GALERKIN METHOD; SPECTRAL METHOD; APPROXIMATIONS; FORMULATION;
D O I
10.1090/mcom/3295
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we investigate the solution of the steady-state fractional diffusion equation on a bounded domain in R-1. The diffusion operator investigated, motivated by physical considerations, is neither the Riemann-Liouville nor the Caputo fractional diffusion operator. We determine a closed form expression for the kernel of the fractional diffusion operator which, in most cases, determines the regularity of the solution. Next we establish that the Jacobi polynomials are pseudo eigenfunctions for the fractional diffusion operator. A spectral type approximation method for the solution of the steady-state fractional diffusion equation is then proposed and studied.
引用
收藏
页码:2273 / 2294
页数:22
相关论文
共 32 条
[1]  
[Anonymous], 2012, SERIES COMPLEXITY NO, DOI [DOI 10.1142/9789814355216, 10.1142/9789814355216]
[2]  
[Anonymous], 1964, NBS APPL MATH SERIES
[3]  
[Anonymous], 1999, MATH SCI ENG
[4]   The fractional-order governing equation of Levy motion [J].
Benson, DA ;
Wheatcraft, SW ;
Meerschaert, MM .
WATER RESOURCES RESEARCH, 2000, 36 (06) :1413-1423
[5]   Numerical simulation for conservative fractional diffusion equations by an expanded mixed formulation [J].
Chen, Huanzhen ;
Wang, Hong .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 296 :480-498
[6]   GENERALIZED JACOBI FUNCTIONS AND THEIR APPLICATIONS TO FRACTIONAL DIFFERENTIAL EQUATIONS [J].
Chen, Sheng ;
Shen, Jie ;
Wang, Li-Lian .
MATHEMATICS OF COMPUTATION, 2016, 85 (300) :1603-1638
[7]   Compact finite difference method for the fractional diffusion equation [J].
Cui, Mingrong .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (20) :7792-7804
[8]  
Diethelm K., 2010, LECT NOTES MATH, V2004, DOI [10.1007/978-3-642-14574-2, DOI 10.1007/978-3-642-14574-2]
[9]   Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints [J].
Du, Qiang ;
Gunzburger, Max ;
Lehoucq, R. B. ;
Zhou, Kun .
SIAM REVIEW, 2012, 54 (04) :667-696
[10]  
Ervin V.J., 2016, REGULARITY SOLUTION