Progressive multifocal leukoencephalopathy lesion and brain parenchymal segmentation from MRI using serial deep convolutional neural networks

被引:6
作者
Al-Louzi, Omar [1 ,2 ]
Roy, Snehashis [3 ]
Osuorah, Ikesinachi [2 ]
Parvathaneni, Prasanna [1 ]
Smith, Bryan R. [4 ]
Ohayon, Joan [2 ]
Sati, Pascal [1 ,5 ]
Pham, Dzung L. [6 ]
Jacobson, Steven [7 ]
Nath, Avindra [4 ]
Reich, Daniel S. [1 ,2 ]
Cortese, Irene [2 ]
机构
[1] NINDS, Translat Neuroradiol Sect, Bldg 36,Rm 4D04, Bethesda, MD 20892 USA
[2] NINDS, Neuroimmunol Clin, Bldg 36,Rm 4D04, Bethesda, MD 20892 USA
[3] NIMH, Sect Neural Funct, Bethesda, MD 20892 USA
[4] NINDS, Sect Infect Nervous Syst, Bldg 36,Rm 4D04, Bethesda, MD 20892 USA
[5] Cedars Sinai Med Ctr, Dept Neurol, Los Angeles, CA 90048 USA
[6] Henry M Jackson Fdn Adv Mil Med, Ctr Neurosci & Regenerat Med, Bethesda, MD USA
[7] NINDS, Viral Immunol Sect, Bldg 36,Rm 4D04, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
Progressive multifocal leukoencephalopathy; Magnetic resonance imaging; Convolutional neural networks; Deep learning; Lesion segmentation; Brain parenchymal fraction; ASSOCIATION;
D O I
10.1016/j.nicl.2020.102499
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Progressive multifocal leukoencephalopathy (PML) is a rare opportunistic brain infection caused by the JC virus and associated with substantial morbidity and mortality. Accurate MRI assessment of PML lesion burden and brain parenchymal atrophy is of decisive value in monitoring the disease course and response to therapy. However, there are currently no validated automatic methods for quantification of PML lesion burden or associated parenchymal volume loss. Furthermore, manual brain or lesion delineations can be tedious, require the use of valuable time resources by radiologists or trained experts, and are often subjective. In this work, we introduce JCnet (named after the causative viral agent), an end-to-end, fully automated method for brain parenchymal and lesion segmentation in PML using consecutive 3D patch-based convolutional neural networks. The network architecture consists of multi-view feature pyramid networks with hierarchical residual learning blocks containing embedded batch normalization and nonlinear activation functions. The feature maps across the bottom-up and top-down pathways of the feature pyramids are merged, and an output probability membership generated through convolutional pathways, thus rendering the method fully convolutional. Our results show that this approach outperforms and improves longitudinal consistency compared to conventional, state-of-the-art methods of healthy brain and multiple sclerosis lesion segmentation, utilized here as comparators given the lack of available methods validated for use in PML. The ability to produce robust and accurate automated measures of brain atrophy and lesion segmentation in PML is not only valuable clinically but holds promise toward including standardized quantitative MRI measures in clinical trials of targeted therapies. Code is available at: https://github.com/omarallouz/JCnet.
引用
收藏
页数:15
相关论文
共 46 条
[1]  
[Anonymous], 2010, P 27 INT C MACH LEAR, DOI 10.5555/3104322.3104425
[2]   A reproducible evaluation of ANTs similarity metric performance in brain image registration [J].
Avants, Brian B. ;
Tustison, Nicholas J. ;
Song, Gang ;
Cook, Philip A. ;
Klein, Arno ;
Gee, James C. .
NEUROIMAGE, 2011, 54 (03) :2033-2044
[3]  
Ba J., 2015, INT C LEARNING REPRE
[4]   PML diagnostic criteria Consensus statement from the AAN Neuroinfectious Disease Section [J].
Berger, Joseph R. ;
Aksamit, Allen J. ;
Clifford, David B. ;
Davis, Larry ;
Koralnik, Igor J. ;
Sejvar, James J. ;
Bartt, Russell ;
Major, Eugene O. ;
Nath, Avindra .
NEUROLOGY, 2013, 80 (15) :1430-1438
[5]   Progressive multifocal leukoencephalopathy after rituximab therapy in HIV-negative patients: a report of 57 cases from the Research on Adverse Drug Events and Reports project [J].
Carson, Kenneth R. ;
Evens, Andrew M. ;
Richey, Elizabeth A. ;
Habermann, Thomas M. ;
Focosi, Daniele ;
Seymour, John F. ;
Laubach, Jacob ;
Bawn, Susie D. ;
Gordon, Leo I. ;
Winter, Jane N. ;
Furman, Richard R. ;
Vose, Julie M. ;
Zelenetz, Andrew D. ;
Mamtani, Ronac ;
Raisch, Dennis W. ;
Dorshimer, Gary W. ;
Rosen, Steven T. ;
Muro, Kenji ;
Gottardi-Littell, Numa R. ;
Talley, Robert L. ;
Sartor, Oliver ;
Green, David ;
Major, Eugene O. ;
Bennett, Charles L. .
BLOOD, 2009, 113 (20) :4834-4840
[6]  
Chollet F., 2018, Deep Learning With Python
[7]  
Cicek O., 2016, LECT NOTES COMPUT SC
[8]   Pembrolizumab Treatment for Progressive Multifocal Leukoencephalopathy [J].
Cortese, Irene ;
Muranski, Pawel ;
Enose-Akahata, Yoshimi ;
Ha, Seung-Kwon ;
Smith, Bryan ;
Monaco, MariaChiara ;
Ryschkewitsch, Caroline ;
Major, Eugene O. ;
Ohayon, Joan ;
Schindler, Matthew K. ;
Beck, Erin ;
Reoma, Lauren B. ;
Jacobson, Steve ;
Reich, Daniel S. ;
Nath, Avindra .
NEW ENGLAND JOURNAL OF MEDICINE, 2019, 380 (17) :1597-1605
[9]   MEASURES OF THE AMOUNT OF ECOLOGIC ASSOCIATION BETWEEN SPECIES [J].
DICE, LR .
ECOLOGY, 1945, 26 (03) :297-302
[10]   Characteristics and antecedents of progressive multifocal leukoencephalopathy in an insured population [J].
Eng, P. M. ;
Turnbull, B. R. ;
Cook, S. F. ;
Davidson, J. E. ;
Kurth, T. ;
Seeger, J. D. .
NEUROLOGY, 2006, 67 (05) :884-886