Modified Busemann-Petty problem on sections of convex bodies

被引:13
作者
Koldobsky, A. [1 ]
Yaskin, V. [1 ]
Yaskina, M. [1 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
基金
美国国家科学基金会;
关键词
Convex Body; Fractional Derivative; Homogeneous Function; Positive Real Root; Section Function;
D O I
10.1007/BF02773605
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Busemann-Petty problem asks whether convex origin-symmetric bodies in R-n with smaller central hyperplane sections necessarily have smaller n-dimensional volume. It is known that the answer is affirmative if n <= 4 and negative if n >= 5. In this article we replace the assumptions of the original Busemann-Petty problem by certain conditions on the volumes of central hyperplane sections so that the answer becomes affirmative in all dimensions.
引用
收藏
页码:191 / 207
页数:17
相关论文
共 16 条
[1]  
Bourgain J., 1999, MATH SCI RES I PUBL, V34, P65
[2]  
Busemann H., 1956, MATH SCAND, V4, P88
[3]   An analytic solution to the Busemann-Petty problem on sections of convex bodies [J].
Gardner, RJ ;
Koldobsky, A ;
Schlumprecht, T .
ANNALS OF MATHEMATICS, 1999, 149 (02) :691-703
[4]  
Gelfand I. M., 1964, Applications of harmonic analysis, VIV
[5]   Comparison of volumes by means of the areas of central sections [J].
Koldobsky, A .
ADVANCES IN APPLIED MATHEMATICS, 2004, 33 (04) :728-732
[6]   An application of the Fourier transform to sections of star bodies [J].
Koldobsky, A .
ISRAEL JOURNAL OF MATHEMATICS, 1998, 106 (1) :157-164
[7]   A generalization of the Busemann-Petty problem on sections of convex bodies [J].
Koldobsky, A .
ISRAEL JOURNAL OF MATHEMATICS, 1999, 110 (1) :75-91
[8]   A functional analytic approach to intersection bodies [J].
Koldobsky, A .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (06) :1507-1526
[9]  
Koldobsky A., 2005, MATH SURVEYS MONOGRA
[10]  
MILMAN VD, 1989, LECT NOTES MATH, V1376, P64