Multichromatic numbers, star chromatic numbers and Kneser graphs

被引:0
作者
Johnson, A [1 ]
Holroyd, FC [1 ]
Stahl, S [1 ]
机构
[1] UNIV KANSAS,LAWRENCE,KS 66045
关键词
multichromatic number; star chromatic number; Kneser graph;
D O I
10.1002/(SICI)1097-0118(199711)26:3<137::AID-JGT4>3.0.CO;2-S
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the relation between the multichromatic number (discussed by Stahl and by Hilton, Rado and Scott) and the star chromatic number (introduced by Vince) of a graph. Denoting these by chi* and eta*, the work of the above authors shows that chi*(G) = eta*(G) if G is bipartite, an odd cycle or a complete graph. We show that chi*(G) equal to or less than eta*(G) for any finite simple graph G. We consider the Kneser graphs G(n)(m), for which chi*(G(n)(m)) = m/n and eta*(G)/X*(G) is unbounded above. We investigate particular classes of these graphs and show that eta*(G(n)(2n+1)) = 3 and eta*(G(n)(2n+2)) = 4 (n > 1), and eta*(G(2)(m)) = m - 2 (m equal to or greater than 4). (C) 1997 John Wiley & Sons, Inc.
引用
收藏
页码:137 / 145
页数:9
相关论文
共 8 条
[1]   A NOTE ON THE STAR CHROMATIC NUMBER [J].
BONDY, JA ;
HELL, P .
JOURNAL OF GRAPH THEORY, 1990, 14 (04) :479-482
[2]   CHROMATIC NUMBER AND OTHER FUNCTIONS OF LEXICOGRAPHIC PRODUCT [J].
GELLER, D ;
STAHL, S .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 19 (01) :87-95
[3]  
Hilton AJW, 1975, NANTA MATH, V9, P152
[4]  
Kneser M., 1955, Abteilung, V58, P27
[5]   KNESER CONJECTURE, CHROMATIC NUMBER, AND HOMOTOPY [J].
LOVASZ, L .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1978, 25 (03) :319-324
[6]  
Schrijver A., 1978, NIEUW ARCH WISK, V26, P454
[7]   NORMAL-TUPLE COLORINGS AND ASSOCIATED GRAPHS [J].
STAHL, S .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1976, 20 (02) :185-203
[8]   STAR CHROMATIC NUMBER [J].
VINCE, A .
JOURNAL OF GRAPH THEORY, 1988, 12 (04) :551-559