Edge-disjoint spanning trees and eigenvalues

被引:20
作者
Liu, Qinghai [1 ]
Hong, Yanmei [2 ]
Lai, Hong-Jian [3 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350002, Peoples R China
[2] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350108, Peoples R China
[3] W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
关键词
Edge disjoint spanning trees; Quotient matrix; Eigenvalue; Edge connectivity; CONNECTIVITY; GRAPHS;
D O I
10.1016/j.laa.2013.11.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let tau(G) and lambda(2)(G) be the maximum number of edge-disjoint spanning trees and the second largest eigenvalue of a graph G, respectively. Motivated by a question of Seymour on the relationship between eigenvalues of a graph G and tau(G), Cioaba and Wong conjectured that for any integers k >= 2, d >= 2k and a d-regular graph G, if lambda(2)(G) < d-2k-1/d+1, then tau(G) >= k. They proved this conjecture for k = 2, 3. Gu, Lai, Li and Yao generalized this conjecture to simple graph and conjectured that for any integer k >= 2 and a graph G with minimum degree delta and maximum degree Delta, if lambda(2)(G) < 2 delta - Delta - 2k-1/delta+1 then tau(G) >= k. In this paper, we prove that lambda(2)(G) delta - 2k-2/k/delta+1 implies tau(G) >= k and show the two conjectures hold for sufficiently large n. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:146 / 151
页数:6
相关论文
共 50 条
  • [41] Spectral radius, edge-disjoint cycles and cycles of the same length
    Lin, Huiqiu
    Zhai, Mingqing
    Zhao, Yanhua
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (02)
  • [42] Embedding Two Edge-disjoint Hamiltonian Cycles into Parity Cubes
    Wang, Yan
    Fan, Jianxi
    Liu, Wenjun
    Wang, Xi
    INDUSTRIAL INSTRUMENTATION AND CONTROL SYSTEMS II, PTS 1-3, 2013, 336-338 : 2248 - 2251
  • [43] The Power of Cut-Based Parameters for Computing Edge-Disjoint Paths
    Ganian, Robert
    Ordyniak, Sebastian
    ALGORITHMICA, 2021, 83 (02) : 726 - 752
  • [44] On the complexity of the edge-disjoint min-min problem in planar digraphs
    Guo, Longkun
    Shen, Hong
    THEORETICAL COMPUTER SCIENCE, 2012, 432 : 58 - 63
  • [45] On the complexity of the planar edge-disjoint paths problem with terminals on the outer boundary
    Schwaerzler, Werner
    COMBINATORICA, 2009, 29 (01) : 121 - 126
  • [46] Spanning Trees with Disjoint Dominating and 2-Dominating Sets
    Miotk, Mateusz
    Zylinski, Pawel
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2022, 42 (01) : 299 - 308
  • [47] Multigraphic degree sequences and supereulerian graphs, disjoint spanning trees
    Gu, Xiaofeng
    Lai, Hong-Jian
    Liang, Yanting
    APPLIED MATHEMATICS LETTERS, 2012, 25 (10) : 1426 - 1429
  • [48] Spanning tree packing number and eigenvalues of graphs with given girth
    Liu, Ruifang
    Lai, Hong-Jian
    Tian, Yingzhi
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 578 : 411 - 424
  • [49] Solving the edge-disjoint paths problem using a two-stage method
    Martin, Bernardo
    Sanchez, Angel
    Beltran-Royo, Cesar
    Duarte, Abraham
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2020, 27 (01) : 435 - 457
  • [50] Group Colorings and DP-Colorings of Multigraphs Using Edge-Disjoint Decompositions
    Lai, Hong-Jian
    Mazza, Lucian
    GRAPHS AND COMBINATORICS, 2021, 37 (06) : 2227 - 2243