Edge-disjoint spanning trees and eigenvalues

被引:20
|
作者
Liu, Qinghai [1 ]
Hong, Yanmei [2 ]
Lai, Hong-Jian [3 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350002, Peoples R China
[2] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350108, Peoples R China
[3] W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
关键词
Edge disjoint spanning trees; Quotient matrix; Eigenvalue; Edge connectivity; CONNECTIVITY; GRAPHS;
D O I
10.1016/j.laa.2013.11.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let tau(G) and lambda(2)(G) be the maximum number of edge-disjoint spanning trees and the second largest eigenvalue of a graph G, respectively. Motivated by a question of Seymour on the relationship between eigenvalues of a graph G and tau(G), Cioaba and Wong conjectured that for any integers k >= 2, d >= 2k and a d-regular graph G, if lambda(2)(G) < d-2k-1/d+1, then tau(G) >= k. They proved this conjecture for k = 2, 3. Gu, Lai, Li and Yao generalized this conjecture to simple graph and conjectured that for any integer k >= 2 and a graph G with minimum degree delta and maximum degree Delta, if lambda(2)(G) < 2 delta - Delta - 2k-1/delta+1 then tau(G) >= k. In this paper, we prove that lambda(2)(G) delta - 2k-2/k/delta+1 implies tau(G) >= k and show the two conjectures hold for sufficiently large n. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:146 / 151
页数:6
相关论文
共 50 条
  • [31] Edge-Disjoint Packing of Stars and Cycles
    Jiang, Minghui
    Xia, Ge
    Zhang, Yong
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, (COCOA 2015), 2015, 9486 : 676 - 687
  • [32] Optimal packings of edge-disjoint odd cycles
    Berge, C
    Reed, B
    DISCRETE MATHEMATICS, 2000, 211 (1-3) : 197 - 202
  • [33] Convergence routing on disjoint spanning trees
    Yener, B
    Ofek, Y
    Yung, M
    COMPUTER NETWORKS, 1999, 31 (05) : 429 - 443
  • [34] Reinforcing the number of disjoint spanning trees
    Liu, Damin
    Lai, Hong-Jian
    Chen, Zhi-Hong
    ARS COMBINATORIA, 2009, 93 : 113 - 127
  • [35] Edge-disjoint paths in faulty augmented cubes
    Ma, Meijie
    Yu, Jiguo
    DISCRETE APPLIED MATHEMATICS, 2021, 294 : 108 - 114
  • [36] A TIGHT LOWER BOUND FOR EDGE-DISJOINT PATHS ON PLANAR DAGS*
    Chitnis, Rajesh
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (02) : 556 - 572
  • [37] A Polylogarithmic Approximation Algorithm for Edge-Disjoint Paths with Congestion 2
    Chuzhoy, Julia
    Li, Shi
    JOURNAL OF THE ACM, 2016, 63 (05)
  • [38] Edge-disjoint paths in faulty hypercube-like networks
    Ma, Meijie
    Xu, Junyan
    Yu, Jiguo
    ARS COMBINATORIA, 2020, 151 : 203 - 210
  • [39] Symmetric property and edge-disjoint Hamiltonian cycles of the spined cube
    Yang, Da-Wei
    Xu, Zihao
    Feng, Yan-Quan
    Lee, Jaeun
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 452
  • [40] Packing edge-disjoint triangles in regular and almost regular tournaments
    Akaria, Islam
    Yuster, Raphael
    DISCRETE MATHEMATICS, 2015, 338 (02) : 217 - 228