Edge-disjoint spanning trees and eigenvalues

被引:20
|
作者
Liu, Qinghai [1 ]
Hong, Yanmei [2 ]
Lai, Hong-Jian [3 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350002, Peoples R China
[2] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350108, Peoples R China
[3] W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
关键词
Edge disjoint spanning trees; Quotient matrix; Eigenvalue; Edge connectivity; CONNECTIVITY; GRAPHS;
D O I
10.1016/j.laa.2013.11.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let tau(G) and lambda(2)(G) be the maximum number of edge-disjoint spanning trees and the second largest eigenvalue of a graph G, respectively. Motivated by a question of Seymour on the relationship between eigenvalues of a graph G and tau(G), Cioaba and Wong conjectured that for any integers k >= 2, d >= 2k and a d-regular graph G, if lambda(2)(G) < d-2k-1/d+1, then tau(G) >= k. They proved this conjecture for k = 2, 3. Gu, Lai, Li and Yao generalized this conjecture to simple graph and conjectured that for any integer k >= 2 and a graph G with minimum degree delta and maximum degree Delta, if lambda(2)(G) < 2 delta - Delta - 2k-1/delta+1 then tau(G) >= k. In this paper, we prove that lambda(2)(G) delta - 2k-2/k/delta+1 implies tau(G) >= k and show the two conjectures hold for sufficiently large n. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:146 / 151
页数:6
相关论文
共 50 条
  • [21] Three Edge-Disjoint Plane Spanning Paths in a Point Set
    Kindermann, P.
    Kratochvil, J.
    Liotta, G.
    Valtr, P.
    GRAPH DRAWING AND NETWORK VISUALIZATION, GD 2023, PT I, 2023, 14465 : 323 - 338
  • [22] Constructing edge-disjoint spanning trees in several cube-based networks with applications to edge fault-tolerant communication
    Huanwen Zhang
    Yan Wang
    Jianxi Fan
    Yuejuan Han
    Baolei Cheng
    The Journal of Supercomputing, 2024, 80 : 1907 - 1934
  • [23] Edge-disjoint trees containing some given vertices in a graph
    Kriesell, M
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 88 (01) : 53 - 65
  • [24] Edge-disjoint branchings in temporal digraphs
    Campos, Victor
    Lopes, Raul
    Marino, Andrea
    Silva, Ana
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (04)
  • [25] Nowhere-zero 3-flow and Z3-connectedness in graphs with four edge-disjoint spanning trees
    Han, Miaomiao
    Lai, Hong-Jian
    Li, Jiaao
    JOURNAL OF GRAPH THEORY, 2018, 88 (04) : 577 - 591
  • [26] Constructing edge-disjoint Steiner paths in lexicographic product networks
    Mao, Yaping
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 308 : 1 - 10
  • [27] Finding well-balanced pairs of edge-disjoint trees in edge-weighted graphs
    Bang-Jensena, Jorgen
    Goncalves, Daniel
    Gortz, Inge Li
    DISCRETE OPTIMIZATION, 2007, 4 (3-4) : 334 - 348
  • [28] EDGE-DISJOINT BRANCHING IN DIRECTED MULTIGRAPHS
    SHILOACH, Y
    INFORMATION PROCESSING LETTERS, 1979, 8 (01) : 24 - 27
  • [29] Reconstructing edge-disjoint paths faster
    Xu, Chao
    OPERATIONS RESEARCH LETTERS, 2016, 44 (02) : 174 - 176
  • [30] Edge-Disjoint Paths in Eulerian Digraphs
    Cavallaro, Dario Giuliano
    Kawarabayashi, Ken-ichi
    Kreutzer, Stephan
    PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, : 704 - 715