Edge-disjoint spanning trees and eigenvalues

被引:20
作者
Liu, Qinghai [1 ]
Hong, Yanmei [2 ]
Lai, Hong-Jian [3 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350002, Peoples R China
[2] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350108, Peoples R China
[3] W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
关键词
Edge disjoint spanning trees; Quotient matrix; Eigenvalue; Edge connectivity; CONNECTIVITY; GRAPHS;
D O I
10.1016/j.laa.2013.11.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let tau(G) and lambda(2)(G) be the maximum number of edge-disjoint spanning trees and the second largest eigenvalue of a graph G, respectively. Motivated by a question of Seymour on the relationship between eigenvalues of a graph G and tau(G), Cioaba and Wong conjectured that for any integers k >= 2, d >= 2k and a d-regular graph G, if lambda(2)(G) < d-2k-1/d+1, then tau(G) >= k. They proved this conjecture for k = 2, 3. Gu, Lai, Li and Yao generalized this conjecture to simple graph and conjectured that for any integer k >= 2 and a graph G with minimum degree delta and maximum degree Delta, if lambda(2)(G) < 2 delta - Delta - 2k-1/delta+1 then tau(G) >= k. In this paper, we prove that lambda(2)(G) delta - 2k-2/k/delta+1 implies tau(G) >= k and show the two conjectures hold for sufficiently large n. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:146 / 151
页数:6
相关论文
共 13 条
[1]  
Bondy J.A., 2008, GTM
[2]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[3]   Edge-connectivity and edge-disjoint spanning trees [J].
Catlin, Paul A. ;
Lai, Hong-Jian ;
Shao, Yehong .
DISCRETE MATHEMATICS, 2009, 309 (05) :1033-1040
[4]   Edge-disjoint spanning trees and eigenvalues of regular graphs [J].
Cioaba, Sebastian M. ;
Wong, Wiseley .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (02) :630-647
[5]   Eigenvalues and edge-connectivity of regular graphs [J].
Cioaba, Sebastian M. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (01) :458-470
[6]  
Gu X., EDGE DISJOINT UNPUB
[7]   CONNECTIVITY AND EDGE-DISJOINT SPANNING-TREES [J].
GUSFIELD, D .
INFORMATION PROCESSING LETTERS, 1983, 16 (02) :87-89
[8]   INTERLACING EIGENVALUES AND GRAPHS [J].
HAEMERS, WH .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 226 :593-616
[9]  
KIRCHHOFF G., 1847, Ann. Phys. Chem., V148, P497, DOI 10.1002/andp.18471481202
[10]  
Nash-Williams J. A., 1961, J LOND MATH SOC, V36, P445, DOI DOI 10.1112/JLMS/S1-36.1.445