Warming alters food web-driven changes in the CO2 flux of experimental pond ecosystems

被引:11
作者
Atwood, T. B. [1 ,2 ,3 ]
Hammill, E. [2 ,3 ]
Kratina, P. [4 ]
Greig, H. S. [5 ]
Shurin, J. B. [6 ]
Richardson, J. S. [1 ]
机构
[1] Univ British Columbia, Dept Forest & Conservat Sci, Vancouver, BC V6T IZ4, Canada
[2] Utah State Univ, Dept Watershed Sci, Logan, UT 84322 USA
[3] Utah State Univ, Ctr Ecol, Logan, UT 84322 USA
[4] Queen Mary Univ London, Sch Biol & Chem Sci, London E1 4NS, England
[5] Univ Maine, Sch Biol & Ecol, Orono, ME 04469 USA
[6] Univ Calif San Diego, Sect Ecol Behav & Evolut, La Jolla, CA 92093 USA
基金
加拿大自然科学与工程研究理事会;
关键词
trophic cascades; biosequestration; carbon cycling; climate change; TROPHIC CASCADES; LAKES; EXCHANGE;
D O I
10.1098/rsbl.2015.0785
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Evidence shows the important role biota play in the carbon cycle, and strategic management of plant and animal populations could enhance CO2 uptake in aquatic ecosystems. However, it is currently unknown how management-driven changes to community structure may interact with climate warming and other anthropogenic perturbations to alter CO2 fluxes. Here we showed that under ambient water temperatures, predators (three-spined stickleback) and nutrient enrichment synergistically increased primary producer biomass, resulting in increased CO2 uptake by mesocosms in early dawn. However, a 3 degrees C increase in water temperatures counteracted positive effects of predators and nutrients, leading to reduced primary producer biomass and a switch from CO2 influx to efflux. This confounding effect of temperature demonstrates that climate scenarios must be accounted for when undertaking ecosystem management actions to increase biosequestration.
引用
收藏
页数:4
相关论文
共 18 条
[1]   Trophic-level dependent effects on CO2 emissions from experimental stream ecosystems [J].
Atwood, Trisha B. ;
Hammill, Edd ;
Richardson, John S. .
GLOBAL CHANGE BIOLOGY, 2014, 20 (11) :3386-3396
[2]   Temperature mean and variance alter phytoplankton biomass and biodiversity in a long-term microcosm experiment [J].
Burgmer, Tanja ;
Hillebrand, Helmut .
OIKOS, 2011, 120 (06) :922-933
[3]  
Carpenter SR, 2001, ECOL MONOGR, V71, P163, DOI 10.1890/0012-9615(2001)071[0163:TCNALP]2.0.CO
[4]  
2
[5]   Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6 [J].
Cole, JJ ;
Caraco, NF .
LIMNOLOGY AND OCEANOGRAPHY, 1998, 43 (04) :647-656
[6]   Pathways of organic carbon utilization in small lakes:: Results from a whole-lake 13C addition and coupled model [J].
Cole, JJ ;
Carpenter, SR ;
Kitchell, JF ;
Pace, ML .
LIMNOLOGY AND OCEANOGRAPHY, 2002, 47 (06) :1664-1675
[7]   Trophic Downgrading of Planet Earth [J].
Estes, James A. ;
Terborgh, John ;
Brashares, Justin S. ;
Power, Mary E. ;
Berger, Joel ;
Bond, William J. ;
Carpenter, Stephen R. ;
Essington, Timothy E. ;
Holt, Robert D. ;
Jackson, Jeremy B. C. ;
Marquis, Robert J. ;
Oksanen, Lauri ;
Oksanen, Tarja ;
Paine, Robert T. ;
Pikitch, Ellen K. ;
Ripple, William J. ;
Sandin, Stuart A. ;
Scheffer, Marten ;
Schoener, Thomas W. ;
Shurin, Jonathan B. ;
Sinclair, Anthony R. E. ;
Soule, Michael E. ;
Virtanen, Risto ;
Wardle, David A. .
SCIENCE, 2011, 333 (6040) :301-306
[8]   Warming modifies trophic cascades and eutrophication in experimental freshwater communities [J].
Kratina, Pavel ;
Greig, Hamish S. ;
Thompson, Patrick L. ;
Carvalho-Pereira, Ticiana S. A. ;
Shurin, Jonathan B. .
ECOLOGY, 2012, 93 (06) :1421-1430
[9]   Warming and browning of lakes: consequences for pelagic carbon metabolism and sediment delivery [J].
Kritzberg, Emma S. ;
Graneli, Wilhelm ;
Bjork, Jessica ;
Bronmark, Christer ;
Hallgren, Per ;
Nicolle, Alice ;
Persson, Anders ;
Hansson, Lars-Anders .
FRESHWATER BIOLOGY, 2014, 59 (02) :325-336
[10]   Warming and Resource Availability Shift Food Web Structure and Metabolism [J].
O'Connor, Mary I. ;
Piehler, Michael F. ;
Leech, Dina M. ;
Anton, Andrea ;
Bruno, John F. .
PLOS BIOLOGY, 2009, 7 (08)