A PROOF OF THE GROTHENDIECK-SERRE CONJECTURE ON PRINCIPAL BUNDLES OVER REGULAR LOCAL RINGS CONTAINING INFINITE FIELDS

被引:41
作者
Fedorov, Roman [1 ]
Panin, Ivan [2 ]
机构
[1] Kansas State Univ, Dept Math, 138 Cardwell Hall, Manhattan, KS 66506 USA
[2] Steklov Inst Math St Petersburg, Fontanka 27, St Petersburg 191023, Russia
来源
PUBLICATIONS MATHEMATIQUES DE L IHES | 2015年 / 122期
基金
俄罗斯科学基金会; 美国国家科学基金会;
关键词
REDUCTIVE GROUP SCHEMES; HOMOGENEOUS SPACES;
D O I
10.1007/s10240-015-0075-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a regular local ring containing an infinite field. Let G be a reductive group scheme over R. We prove that a principal G-bundle over R is trivial if it is trivial over the fraction field of R. In other words, if K is the fraction field of R, then the map of non-abelian cohomology pointed sets H-et(1)(R, G) -> H-et(1)(K, G) induced by the inclusion of R into K has a trivial kernel.
引用
收藏
页码:169 / 193
页数:25
相关论文
共 38 条
[1]  
Actin M., 1973, LECT NOTES MATH, V305
[2]  
[Anonymous], 1989, Commutative ring theory
[3]  
[Anonymous], 2005, TRANSFORM GROUPS, DOI DOI 10.1007/S00031-005-1010-Z
[4]  
[Anonymous], 1966, Inst. Hautes Etudes Sci. Publ. Math.
[5]  
Chernousov V., 2010, Doc. Math., P147
[6]  
Colliot-Thelene J.-L., 1992, I HAUTES ETUDES SCI, V75, P97
[7]   PRINCIPAL HOMOGENEOUS SPACES UNDER FLASQUE TORI - APPLICATIONS [J].
COLLIOTTHELENE, JL ;
SANSUC, JJ .
JOURNAL OF ALGEBRA, 1987, 106 (01) :148-205
[8]  
Demazure M., 1970, Lecture Notes in Mathematics, V153
[9]   AFFINE ANALOG OF THE PROPER BASE CHANGE THEOREM [J].
Gabber, Ofer .
ISRAEL JOURNAL OF MATHEMATICS, 1994, 87 (1-3) :325-335
[10]  
Gille P, 2002, TRANSFORM GROUPS, V7, P231, DOI 10.1007/s00031-002-0012-3