Network structure of the mouse brain connectome with voxel resolution

被引:59
作者
Coletta, Ludovico [1 ,2 ]
Pagani, Marco [1 ]
Whitesell, Jennifer D. [3 ]
Harris, Julie A. [3 ]
Bernhardt, Boris [4 ]
Gozzi, Alessandro [1 ]
机构
[1] Ist Italiano Tecnol, Funct Neuroimaging Lab, Ctr Neurosci & Cognit Syst UniTn, Rovereto, Italy
[2] Univ Trento, Ctr Mind Brain Sci, I-38068 Rovereto, TN, Italy
[3] Allen Inst Brain Sci, Seattle, WA USA
[4] McGill Univ, McConnell Brain Imaging Ctr, Montreal Neurol Inst, Multimodal Imaging & Connectome Anal Lab, Montreal, PQ, Canada
基金
欧洲研究理事会;
关键词
SCALE FUNCTIONAL CONNECTIVITY; DEFAULT-MODE NETWORK; HUBS; TOPOLOGY; CORTEX; IMPACT;
D O I
10.1126/sciadv.abb7187
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fine-grained descriptions of brain connectivity are required to understand how neural information is processed and relayed across spatial scales. Previous investigations of the mouse brain connectome have used discrete anatomical parcellations, limiting spatial resolution and potentially concealing network attributes critical to connectome organization. Here, we provide a voxel-level description of the network and hierarchical structure of the directed mouse connectome, unconstrained by regional partitioning. We report a number of previously unappreciated organizational principles in the mammalian brain, including a directional segregation of hub regions into neural sink and sources, and a strategic wiring of neuromodulatory nuclei as connector hubs and critical orchestrators of network communication. We also find that the mouse cortical connectome is hierarchically organized along two superimposed cortical gradients reflecting unimodal-transmodal functional processing and a modality-specific sensorimotor axis, recapitulating a phylogenetically conserved feature of higher mammals. These findings advance our understanding of the foundational wiring principles of the mammalian connectome.
引用
收藏
页数:14
相关论文
共 59 条
[1]   Brain networks under attack: robustness properties and the impact of lesions [J].
Aerts, Hannelore ;
Fias, Wim ;
Caeyenberghs, Karen ;
Marinazzo, Daniele .
BRAIN, 2016, 139 :3063-3083
[2]   Modeling the Impact of Lesions in the Human Brain [J].
Alstott, Jeffrey ;
Breakspear, Michael ;
Hagmann, Patric ;
Cammoun, Leila ;
Sporns, Olaf .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (06)
[3]   Communication dynamics in complex brain networks [J].
Avena-Koenigsberger, Andrea ;
Misic, Bratislav ;
Sporns, Olaf .
NATURE REVIEWS NEUROSCIENCE, 2018, 19 (01) :17-33
[4]  
Baldassarre G, 2013, COMPUTATIONAL ROBOTI, P237, DOI DOI 10.1007/978-3-642-39875-9_11
[5]   Total communicability as a centrality measure [J].
Benzi, Michele ;
Klymko, Christine .
JOURNAL OF COMPLEX NETWORKS, 2013, 1 (02) :124-149
[6]   Multi-scale brain networks [J].
Betzel, Richard F. ;
Bassett, Danielle S. .
NEUROIMAGE, 2017, 160 :73-83
[7]   Graph Analysis and Modularity of Brain Functional Connectivity Networks: Searching for the Optimal Threshold [J].
Bordier, Cecile ;
Nicolini, Carlo ;
Bifone, Angelo .
FRONTIERS IN NEUROSCIENCE, 2017, 11
[8]   Dynamic models of large-scale brain activity [J].
Breakspear, Michael .
NATURE NEUROSCIENCE, 2017, 20 (03) :340-352
[9]   The brain's default network: updated anatomy, physiology and evolving insights [J].
Buckner, Randy L. ;
DiNicola, Lauren M. .
NATURE REVIEWS NEUROSCIENCE, 2019, 20 (10) :593-608
[10]   Hierarchy of transcriptomic specialization across human cortex captured by structural neuroimaging topography [J].
Burt, Joshua B. ;
Demirtas, Murat ;
Eckner, William J. ;
Navejar, Natasha M. ;
Ji, Jie Lisa ;
Martin, William J. ;
Bernacchia, Alberto ;
Anticevic, Alan ;
Murray, John D. .
NATURE NEUROSCIENCE, 2018, 21 (09) :1251-+