Transient wave propagation in inhomogeneous porous materials: Application of fractional derivatives

被引:23
作者
Fellah, M.
Fellah, Z. E. A.
Depollier, C.
机构
[1] CNRS, Lab Mecan & Acoust, UPR 7051, F-13402 Marseille, France
[2] USTHB, Inst Phys, Phys Theor Lab, Bab Ezzouar 16111, Algeria
[3] Univ Maine, CNRS, UMR 6613, Acoust Lab, F-72085 Le Mans 09, France
关键词
porous materials; fractional calculus; fractional derivatives; scattering operators; wave splitting;
D O I
10.1016/j.sigpro.2006.02.014
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Acoustic wave propagation in inhomogeneous porous material is studied in the time domain. Fractional calculus is used to describe the inertial, viscous and thermal interactions between fluid and structure. A generalized hyperbolic fractional equation (generalized Telegraph equation) for transient sound wave propagation in inhomogeneous material is established. A wave-splitting technique is presented formally for the description of the dynamic equation of the reflection scattering operator. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:2658 / 2667
页数:10
相关论文
共 26 条
[1]  
Allard J.F., 1993, Propagation of sound in porous media, DOI [10.1002/9780470747339, DOI 10.1002/9780470747339]
[2]  
BABENKO YI, 1989, HEAT MASS TRANSFER M
[3]   ON THE FRACTIONAL CALCULUS MODEL OF VISCOELASTIC BEHAVIOR [J].
BAGLEY, RL ;
TORVIK, PJ .
JOURNAL OF RHEOLOGY, 1986, 30 (01) :133-155
[6]   VIBRATIONS OF AN INFINITE PLATE WITH A FREQUENCY INDEPENDENT Q [J].
CAPUTO, M .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1976, 60 (03) :634-639
[7]  
Claerbout J.F., 1985, Imaging the earth's interior
[8]  
Collin R., 1991, FIELD THEORY GUIDED
[9]   MODELING ELECTROMAGNETIC-WAVE PROPAGATION IN THE TROPOSPHERE USING THE PARABOLIC EQUATION [J].
DOCKERY, GD .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1988, 36 (10) :1464-1470
[10]  
ENGQUIST B, 1977, MATH COMPUT, V31, P629, DOI 10.1090/S0025-5718-1977-0436612-4