Identifying parametric controls and dependencies in integrated assessment models using global sensitivity analysis

被引:60
作者
Butler, Martha P. [1 ]
Reed, Patrick M. [2 ]
Fisher-Vanden, Karen [3 ]
Keller, Klaus [4 ,5 ,6 ]
Wagener, Thorsten [7 ]
机构
[1] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA
[2] Cornell Univ, Dept Civil & Environm Engn, Ithaca, NY 14853 USA
[3] Penn State Univ, Dept Agr Econ Sociol & Educ, University Pk, PA 16802 USA
[4] Penn State Univ, Dept Geosci, University Pk, PA 16802 USA
[5] Penn State Univ, Earth & Environm Syst Inst, University Pk, PA 16802 USA
[6] Carnegie Mellon Univ, Dept Engn & Publ Policy, Pittsburgh, PA 15213 USA
[7] Univ Bristol, Dept Civil Engn, Bristol BS8 1TR, Avon, England
基金
美国国家科学基金会;
关键词
Integrated assessment model; Global sensitivity analysis; Sobol' method; Model diagnostics; Climate change; TECHNOLOGICAL-CHANGE; CARBON-CYCLE; CLIMATE; UNCERTAINTY; POLICY; THRESHOLDS;
D O I
10.1016/j.envsoft.2014.05.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Integrated assessment models for climate change (IAMs) couple representations of economic and natural systems to identify and evaluate strategies for managing the effects of global climate change. In this study we subject three policy scenarios from the globally-aggregated Dynamic Integrated model of Climate and the Economy IAM to a comprehensive global sensitivity analysis using Sobol' variance decomposition. We focus on cost metrics representing diversions of economic resources from global world production. Our study illustrates how the sensitivity ranking of model parameters differs for alternative cost metrics, over time, and for different emission control strategies. This study contributes a comprehensive illustration of the negative consequences associated with using a priori expert elicitations to reduce the set of parameters analyzed in IAM uncertainty analysis. The results also provide a strong argument for conducting comprehensive model diagnostics for IAMs that explicitly account for the parameter interactions between the coupled natural and economic system components. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:10 / 29
页数:20
相关论文
共 77 条
  • [1] Fat tails, exponents, extreme uncertainty: Simulating catastrophe in DICE
    Ackerman, Frank
    Stanton, Elizabeth A.
    Bueno, Ramon
    [J]. ECOLOGICAL ECONOMICS, 2010, 69 (08) : 1657 - 1665
  • [2] Uncertainty in Climate Change Modeling: Can Global Sensitivity Analysis Be of Help?
    Anderson, Barry
    Borgonovo, Emanuele
    Galeotti, Marzio
    Roson, Roberto
    [J]. RISK ANALYSIS, 2014, 34 (02) : 271 - 293
  • [3] Sampling methods and sensitivity analysis for large parameter sets
    Andres, TH
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1997, 57 (1-4) : 77 - 110
  • [4] [Anonymous], 2011, World Energy Outlook 2011: The Electricity Access Database
  • [5] [Anonymous], 2009, TECHNICAL REPORT
  • [6] [Anonymous], TECHNICAL REPORT
  • [7] [Anonymous], 2010, Technical Report
  • [8] [Anonymous], 2011, TECHNICAL REPORT
  • [9] [Anonymous], 2011, TECHNICAL REPORT
  • [10] Sensitivity measures, ANOVA-like techniques and the use of bootstrap
    Archer, GEB
    Saltelli, A
    Sobol, IM
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1997, 58 (02) : 99 - 120