Uncertainty quantification of percolating electrical conductance for wavy carbon nanotube-filled polymer nanocomposites using Bayesian inference

被引:15
作者
Doh, Jaehyeok [1 ,4 ]
Park, Sang-In [2 ]
Yang, Qing [3 ]
Raghavan, Nagarajan [4 ]
机构
[1] Gyeongnam Natl Univ Sci & Technol, Dept Mech Engn, Jinju Si 52725, Gyeongsangnam D, South Korea
[2] Incheon Natl Univ, Dept Mechatron Engn, Incheon 22012, South Korea
[3] Zhejiang Univ, Coll Opt Sci & Engn, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Peoples R China
[4] Singapore Univ Technol & Design SUTD, Engn Prod Dev EPD Pillar, Singapore 487372, Singapore
关键词
Polymer nanocomposites (PNC); Carbon nanotube (CNT) waviness; Electrical percolation behavior; Pearson correlation coefficient; Uncertainty quantification (UQ); Bayesian inference; OPTIMIZATION; COMPOSITES; PREDICTION; MCMC;
D O I
10.1016/j.carbon.2020.09.092
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This research focuses on the uncertainty quantification of electrical percolation behavior in wavy carbon nanotube (CNT)-filled polymer nanocomposites with a three-dimensional representative volume element accounting for both tunneling resistance (quantum carrier tunneling) and stochasticity in CNT waviness. The developed percolation model is validated with existing experimental data, and model parameters for electrical conductance converge to the optimal value with Markov Chain Monte Carlo (MCMC) based on Bayesian inference. The predicted 95% confidence interval of electrical conductance indicates a different trend between two-and three-parameters of the electrical conductance model. The main trend of correlation between the percolation threshold (phi(c)) and a parameter of the phase transition (critical exponent, t) indicates a statistically linear relationship via evaluation of the Pearson correlation coefficient. Moreover, the correlation between intrinsic conductance of CNTs (sigma(o)) and t also strongly affect the magnitude and slope of electrical conductance in uncertainty quantification. This work can contribute to a robust and reliable design of the PNC considering the physical uncertainty satisfying the target electrical performance through controlling phi(c), sigma(o), and t. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:308 / 323
页数:16
相关论文
共 54 条
  • [1] Acar P., 2018, ASME INT MECH ENG C
  • [2] Improved MCMC method for parameter estimation based on marginal probability density function
    An, Dawn
    Choi, Joo-Ho
    [J]. JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2013, 27 (06) : 1771 - 1779
  • [3] An introduction to MCMC for machine learning
    Andrieu, C
    de Freitas, N
    Doucet, A
    Jordan, MI
    [J]. MACHINE LEARNING, 2003, 50 (1-2) : 5 - 43
  • [4] Effect of carbon nanotube geometry upon tunneling assisted electrical network in nanocomposites
    Bao, W. S.
    Meguid, S. A.
    Zhu, Z. H.
    Pan, Y.
    Weng, G. J.
    [J]. JOURNAL OF APPLIED PHYSICS, 2013, 113 (23)
  • [5] Tunneling resistance and its effect on the electrical conductivity of carbon nanotube nanocomposites
    Bao, W. S.
    Meguid, S. A.
    Zhu, Z. H.
    Weng, G. J.
    [J]. JOURNAL OF APPLIED PHYSICS, 2012, 111 (09)
  • [6] Modeling electrical conductivities of nanocomposites with aligned carbon nanotubes
    Bao, W. S.
    Meguid, S. A.
    Zhu, Z. H.
    Meguid, M. J.
    [J]. NANOTECHNOLOGY, 2011, 22 (48)
  • [7] Carbon nanotubes - the route toward applications
    Baughman, RH
    Zakhidov, AA
    de Heer, WA
    [J]. SCIENCE, 2002, 297 (5582) : 787 - 792
  • [8] Benesty J, 2009, SPRINGER TOP SIGN PR, V2, P37, DOI 10.1007/978-3-642-00296-0_5
  • [9] Binder K., 1993, Comput Phys, V7, P156, DOI DOI 10.1063/1.4823159
  • [10] Bottema O., 1990, Theoretical kinematics