Slurry-based chemical hydrogen storage systems for automotive fuel cell applications

被引:28
作者
Brooks, Kriston P. [1 ]
Semelsberger, Troy A. [2 ]
Simmons, Kevin L. [1 ]
van Hassel, Bart [3 ]
机构
[1] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA
[2] Los Alamos Natl Lab, Mat Phys & Applicat Div, Los Alamos, NM 87545 USA
[3] United Technol Res Ctr, E Hartford, CT 06108 USA
关键词
Chemical hydrogen storage; Fuel cell vehicle; System design; Ammonia borane; Alane slurries; AMMONIA-BORANE; THERMAL-DECOMPOSITION; KINETICS;
D O I
10.1016/j.jpowsour.2014.05.145
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, the system designs for hydrogen storage using chemical hydrogen materials in an 80-kWe fuel cell, light-duty vehicle are described. Ammonia borane and alane are used for these designs to represent the general classes of exothermic and endothermic materials. The designs are then compared to the USDRIVE/DOE-developed set of system-level targets for onboard storage. While most DOE targets are predicted to be achieved based on the modeling, the system gravimetric and volumetric densities were more challenging and became the focus of this work. The resulting system evaluation determined that the slurry accounts for the majority of the system mass. Only modest reductions in the system mass can be expected with improvements in the balance-of-plant components. Most of the gravimetric improvements will require developing materials with higher inherent storage capacity or by increasing the solids loading of the chemical hydrogen storage material in the slurry. (C) 2014 Elsevier BV and United Technologies Corporation. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:950 / 959
页数:10
相关论文
共 20 条
[11]  
James B.D., 2012, ALANE AMMONIA UNPUB
[12]   Experimental determination of dust cloud deflagration parameters of selected hydrogen storage materials: Complex metal hydrides, chemical hydrides, and adsorbents [J].
Khalil, Y. F. .
JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2013, 26 (01) :96-103
[13]   Physical, structural, and dehydrogenation properties of ammonia borane in ionic liquids [J].
Nakagawa, Tessui ;
Burrell, Anthony K. ;
Del Sesto, Rico E. ;
Janicke, Michael T. ;
Nekimken, Adam L. ;
Purdy, Geraldine M. ;
Paik, Biswajit ;
Zhong, Rui-Qin ;
Semelsberger, Troy A. ;
Davis, Benjamin L. .
RSC ADVANCES, 2014, 4 (42) :21681-21687
[14]   System modeling methodology and analyses for materials-based hydrogen storage [J].
Pasini, Jose Miguel ;
van Hassel, Bart A. ;
Mosher, Daniel A. ;
Veenstra, Michael J. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (03) :2874-2884
[15]   Thermal Stability of Ammonia Borane: A Case Study for Exothermic Hydrogen Storage Materials [J].
Rassat, Scot D. ;
Aardahl, Christopher L. ;
Autrey, Tom ;
Smith, R. Scott .
ENERGY & FUELS, 2010, 24 (04) :2596-2606
[16]  
Semelsberger T., 2013, DOE ANN MERIT REV HY
[17]   Regeneration of Ammonia Borane Spent Fuel by Direct Reaction with Hydrazine and Liquid Ammonia [J].
Sutton, Andrew D. ;
Burrell, Anthony K. ;
Dixon, David A. ;
Garner, Edward B., III ;
Gordon, John C. ;
Nakagawa, Tessui ;
Ott, Kevin C. ;
Robinson, Pierce ;
Vasiliu, Monica .
SCIENCE, 2011, 331 (6023) :1426-1429
[18]  
Thornton M., 2012, 2012011227 SAE
[19]  
van Hassel B.A., 2013, DOE ANN MERIT REV HY
[20]   Calorimetric process monitoring of thermal decomposition of B-N-H compounds [J].
Wolf, G ;
Baumann, J ;
Baitalow, F ;
Hoffmann, FP .
THERMOCHIMICA ACTA, 2000, 343 (1-2) :19-25