Statistical mechanics of two-dimensional shuffled foams: Geometry-topology correlation in small or large disorder limits

被引:13
|
作者
Durand, Marc [1 ]
Kraynik, Andrew M. [2 ]
van Swol, Frank [3 ,4 ]
Kaefer, Jos [5 ]
Quilliet, Catherine [6 ]
Cox, Simon [7 ,8 ]
Talebi, Shirin Ataei [6 ]
Graner, Francois [1 ]
机构
[1] MSC, F-75205 Paris 13, France
[2] CALTECH, Div Chem & Chem Engn, Pasadena, CA 91125 USA
[3] Sandia Natl Labs, Albuquerque, NM 87185 USA
[4] Univ New Mexico, Dept Chem & Nucl Engn, Albuquerque, NM USA
[5] Lab Biometrie & Biol Evolut, F-69622 Villeurbanne, France
[6] Lab Interdisciplinaire Phys, F-38402 St Martin Dheres, France
[7] Aberystwyth Univ, Dept Math, Aberystwyth SY23 3BZ, Dyfed, Wales
[8] Aberystwyth Univ, Dept Phys, Aberystwyth SY23 3BZ, Dyfed, Wales
来源
PHYSICAL REVIEW E | 2014年 / 89卷 / 06期
基金
美国能源部; 英国工程与自然科学研究理事会;
关键词
CELLULAR STRUCTURES; 2; DIMENSIONS; PATTERNS;
D O I
10.1103/PhysRevE.89.062309
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Bubble monolayers are model systems for experiments and simulations of two-dimensional packing problems of deformable objects. We explore the relation between the distributions of the number of bubble sides (topology) and the bubble areas (geometry) in the low liquid fraction limit. We use a statistical model [M. Durand, Europhys. Lett. 90, 60002 (2010)] which takes into account Plateau laws. We predict the correlation between geometrical disorder (bubble size dispersity) and topological disorder (width of bubble side number distribution) over an extended range of bubble size dispersities. Extensive data sets arising from shuffled foam experiments, SURFACE EVOLVER simulations, and cellular Potts model simulations all collapse surprisingly well and coincide with the model predictions, even at extremely high size dispersity. At moderate size dispersity, we recover our earlier approximate predictions [M. Durand, J. Kafer, C. Quilliet, S. Cox, S. A. Talebi, and F. Graner, Phys. Rev. Lett. 107, 168304 (2011)]. At extremely low dispersity, when approaching the perfectly regular honeycomb pattern, we study how both geometrical and topological disorders vanish. We identify a crystallization mechanism and explore it quantitatively in the case of bidisperse foams. Due to the deformability of the bubbles, foams can crystallize over a larger range of size dispersities than hard disks. The model predicts that the crystallization transition occurs when the ratio of largest to smallest bubble radii is 1.4.
引用
收藏
页数:10
相关论文
共 10 条
  • [1] Statistical Mechanics of Two-Dimensional Shuffled Foams: Prediction of the Correlation between Geometry and Topology
    Durand, Marc
    Kaefer, Jos
    Quilliet, Catherine
    Cox, Simon
    Talebi, Shirin Ataei
    Graner, Francois
    PHYSICAL REVIEW LETTERS, 2011, 107 (16)
  • [2] Statistical mechanics of two-dimensional foams
    Durand, M.
    EPL, 2010, 90 (06)
  • [3] Statistical mechanics of two-dimensional foams: Physical foundations of the model
    Marc Durand
    The European Physical Journal E, 2015, 38
  • [4] Statistical mechanics of two-dimensional foams: Physical foundations of the model
    Durand, Marc
    EUROPEAN PHYSICAL JOURNAL E, 2015, 38 (12): : 1 - 16
  • [5] Geometry and Topology of Two-Dimensional Dry Foams: Computer Simulation and Experimental Characterization
    Tong, Mingming
    Cole, Katie
    Brito-Parada, Pablo R.
    Neethling, Stephen
    Cilliers, Jan J.
    LANGMUIR, 2017, 33 (15) : 3839 - 3846
  • [6] DISORDER VARIABLES AND PARA-FERMIONS IN TWO-DIMENSIONAL STATISTICAL-MECHANICS
    FRADKIN, E
    KADANOFF, LP
    NUCLEAR PHYSICS B, 1980, 170 (01) : 1 - 15
  • [7] The modeling of small scales in two-dimensional turbulent flows: A statistical mechanics approach
    Robert, R
    Rosier, C
    JOURNAL OF STATISTICAL PHYSICS, 1997, 86 (3-4) : 481 - 515
  • [8] The modeling of small scales in two-dimensional turbulent flows: A statistical mechanics approach
    Raoul Robert
    Carole Rosier
    Journal of Statistical Physics, 1997, 86 : 481 - 515
  • [9] Effects of two-dimensional magnetic uncertainties and three-dimensional error and perturbation fields on the Small Angle Slot divertor geometry and topology
    Trevisan, G. L.
    Lao, L. L.
    Evans, T. E.
    Guo, H. Y.
    Orlov, D. M.
    Strait, E. J.
    Wingen, A.
    Wu, W.
    NUCLEAR FUSION, 2018, 58 (02)
  • [10] RIBOSOMAL-PROTEINS OF TETRAHYMENA-THERMOPHILA - CORRELATION OF ONE-DIMENSIONAL AND TWO-DIMENSIONAL ELECTROPHORETIC MIGRATION PATTERNS AND CHARACTERIZATION OF ADDITIONAL SMALL AND LARGE SUBUNIT PROTEINS
    PETRIDOU, B
    GUERIN, MF
    HAYES, F
    BIOCHIMIE, 1989, 71 (05) : 655 - 665