Functional PLGA Scaffolds for Chondrogenesis of Bone-Marrow-Derived Mesenchymal Stem Cells

被引:21
作者
Park, Kwideok [1 ]
Cho, Kyoung-Jin [1 ]
Kim, Jae-Jin [1 ]
Kim, Ik-Hwan [2 ]
Han, Dong Keun [1 ]
机构
[1] Korea Inst Sci & Technol, Biomat Res Ctr, Seoul 130650, South Korea
[2] Korea Univ, Sch Life Sci & Biotechnol, Seoul, South Korea
关键词
drug delivery systems; structure; supports; surfaces; tissue engineering; INDUCED GRAFT-POLYMERIZATION; GROWTH-FACTOR DELIVERY; IN-VIVO; TISSUE REGENERATION; DIFFERENTIATION; HEPARIN; TGF-BETA-1; SYSTEM; HYDROGELS; ADHESION;
D O I
10.1002/mabi.200800187
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Two chondrogenic factors, Dex and TGF-beta 1, were incorporated into PLGA scaffolds and their chondrogenic potential was evaluated. The Dex-loaded PLGA scaffold was grafted with AA and heparin, the heparin-immobilized one was then reacted with TGF-beta 1, yielding a PLGA/Dex-TGF (PLGA/D/T) scaffold. The scaffolds were seeded with rabbit MSCs and cultured for 4 weeks. The results show that the scaffolds including chondrogenic factors strongly upregulated the expression of cartilage-specific genes and clearly displayed type-II Collagen immunofluorescence. The functionalized PLGA scaffolds could provide an appropriate niche for chondrogenic differentiation of MSC without a constant medium supply of Dex and TGF-beta 1.
引用
收藏
页码:221 / 229
页数:9
相关论文
共 37 条
[1]  
AGAMEMNON EG, 1988, J CELL BIOL, V106, P2139
[2]  
Agrawal CM, 2001, J BIOMED MATER RES, V55, P141, DOI 10.1002/1097-4636(200105)55:2<141::AID-JBM1000>3.3.CO
[3]  
2-A
[4]   Utilizing acid pretreatment and electrospinning to improve biocompatibility of poly(glycolic acid) for tissue engineering [J].
Boland, ED ;
Telemeco, TA ;
Simpson, DG ;
Wnek, GE ;
Bowlin, GL .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2004, 71B (01) :144-152
[5]   Microfabrication of three-dimensional engineered scaffolds [J].
Borenstein, Jeffrey T. ;
Weinberg, Eli J. ;
Orrick, Brian K. ;
Sundback, Cathryn ;
Kaazempur-Mofrad, Mohammad R. ;
Vacanti, Joseph P. .
TISSUE ENGINEERING, 2007, 13 (08) :1837-1844
[6]   Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells in pellet cultural system [J].
Bosnakovski, D ;
Mizuno, M ;
Kim, G ;
Ishiguro, T ;
Okumura, M ;
Iwanaga, T ;
Kadosawa, T ;
Fujinaga, T .
EXPERIMENTAL HEMATOLOGY, 2004, 32 (05) :502-509
[7]   Chondrogenic differentiation of mesenchymal stem cells in a leakproof collagen sponge [J].
Chen, Guoping ;
Akahane, Daisuke ;
Kawazoe, Naoki ;
Yamamoto, Katsuyuki ;
Tateishi, Tetsuya .
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2008, 28 (01) :195-201
[8]   Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells [J].
D'Amour, Kevin A. ;
Bang, Anne G. ;
Eliazer, Susan ;
Kelly, Olivia G. ;
Agulnick, Alan D. ;
Smart, Nora G. ;
Moorman, Mark A. ;
Kroon, Evert ;
Carpenter, Melissa K. ;
Baetge, Emmanuel E. .
NATURE BIOTECHNOLOGY, 2006, 24 (11) :1392-1401
[9]   Glucocorticoids promote chondrogenic differentiation of adult human mesenchymal stem cells by enhancing expression of cartilage extracellular matrix genes [J].
Derfoul, Assia ;
Perkins, Geraldine L. ;
Hall, David J. ;
Tuan, Rocky S. .
STEM CELLS, 2006, 24 (06) :1487-1495
[10]   Controlled-release of IGF-I and TGF-β1 in a photopolymerizing hydrogel for cartilage tissue engineering [J].
Elisseeff, J ;
McIntosh, W ;
Fu, K ;
Blunk, T ;
Langer, R .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2001, 19 (06) :1098-1104