Strong consistency and rates of convergence for a random estimator of a fuzzy set

被引:1
作者
Teran, Pedro [1 ]
Lopez-Diaz, Miguel [2 ]
机构
[1] Univ Oviedo, Dept Estadist & IO & DM, Escuela Politecn Ingn, E-33071 Oviedo, Spain
[2] Univ Oviedo, Dept Estadist & IO & DM, Fac Ciencias, E-33071 Oviedo, Spain
关键词
Fuzzy set; Random set; Rate of convergence; Set estimation; CONVEX-HULL; SPACE;
D O I
10.1016/j.csda.2014.02.016
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An approximation scheme for estimating a fixed, unknown fuzzy set from random samples taken from the nested random set defined by its alpha-level sets is presented. Its strong consistency is studied, giving rates of convergence in four metrics. A simulation study suggests that the behaviour for moderately small samples is coherent with the theoretical rate of convergence valid for large samples. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:130 / 145
页数:16
相关论文
共 35 条
[1]   ESTIMATING TERRITORY AND HOME-RANGE SIZES: DO SINGING LOCATIONS ALONE PROVIDE AN ACCURATE ESTIMATE OF SPACE USE? [J].
Anich, Nicholas M. ;
Benson, Thomas J. ;
Bednarz, James C. .
AUK, 2009, 126 (03) :626-634
[2]  
BAI ZD, 2001, ELECTRON J PROBAB, V6, P1
[3]   Convergence rates in nonparametric estimation of level sets [J].
Baíllo, A ;
Cuesta-Albertos, JA ;
Cuevas, A .
STATISTICS & PROBABILITY LETTERS, 2001, 53 (01) :27-35
[4]   Set estimation and nonparametric detection [J].
Baíllo, A ;
Cuevas, A ;
Justel, A .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2000, 28 (04) :765-782
[5]   INTRINSIC VOLUMES AND F-VECTORS OF RANDOM POLYTOPES [J].
BARANY, I .
MATHEMATISCHE ANNALEN, 1989, 285 (04) :671-699
[6]   On the Hausdorff distance between a convex set and an interior random convex hull [J].
Braker, H ;
Hsing, T ;
Bingham, NH .
ADVANCES IN APPLIED PROBABILITY, 1998, 30 (02) :295-316
[7]   On the area and perimeter of a random convex hull in a bounded convex set [J].
Braker, H ;
Hsing, T .
PROBABILITY THEORY AND RELATED FIELDS, 1998, 111 (04) :517-550
[8]   Set estimation under convexity type assumptions [J].
Casal, Alberto Rodriguez .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2007, 43 (06) :763-774
[9]   A DE[0,1] representation of random upper semicontinuos functions [J].
Colubi, A ;
Domínguez-Menchero, JS ;
López-Díaz, M ;
Ralescu, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (11) :3237-3242
[10]  
Cornwell WK, 2006, ECOLOGY, V87, P1465, DOI 10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO