A class of linear viscoelastic models based on Bessel functions

被引:33
作者
Colombaro, Ivano [1 ]
Giusti, Andrea [1 ]
Mainardi, Francesco [1 ]
机构
[1] Univ Bologna, Dept Phys & Astron, Ist Nazl Fis Nucl, Via Irnerio 46, I-40126 Bologna, Italy
关键词
Viscoelasticity; Creep and relaxation; Bessel functions; Dirichlet series; Completely monotone functions;
D O I
10.1007/s11012-016-0456-5
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper we investigate a general class of linear viscoelastic models whose creep and relaxation memory functions are expressed in Laplace domain by suitable ratios of modified Bessel functions of contiguous order. In time domain these functions are shown to be expressed by Dirichlet series (that is infinite Prony series). It follows that the corresponding creep compliance and relaxation modulus turn out to be characterized by infinite discrete spectra of retardation and relaxation time respectively. As a matter of fact, we get a class of viscoelastic models depending on a real parameter . Such models exhibit rheological properties akin to those of a fractional Maxwell model (of order 1/2) for short times and of a standard Maxwell model for long times.
引用
收藏
页码:825 / 832
页数:8
相关论文
共 13 条
[1]  
[Anonymous], 1960, Proc. Glasg. Math. Assoc, DOI DOI 10.1017/S2040618500034067
[2]  
[Anonymous], ARXIV160100563
[3]  
[Anonymous], TRENDS APPL MATH MEC
[4]  
BUCHEN PW, 1975, J MECANIQUE, V14, P597
[5]   A dynamic viscoelastic analogy for fluid-filled elastic tubes [J].
Giusti, Andrea ;
Mainardi, Francesco .
MECCANICA, 2016, 51 (10) :2321-2330
[6]   Wave propagation in media with singular memory [J].
Hanyga, A .
MATHEMATICAL AND COMPUTER MODELLING, 2001, 34 (12-13) :1399-1421
[7]   Some Inequalities for Modified Bessel Functions [J].
Laforgia, Andrea ;
Natalini, Pierpaolo .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
[8]   Creep, relaxation and viscosity properties for basic fractional models in rheology [J].
Mainardi, F. ;
Spada, G. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2011, 193 (01) :133-160
[9]  
Mainardi F., 2000, Fractional Calculus and Waves in Linear Viscoelasticity: an Introduction to Mathematical Models, DOI DOI 10.1142/P926
[10]  
MATLAB Central File Exchange, 6794 MATLAB CENTR